Matter in the Universe of Cellular Automata

  • Klaus MainzerEmail author
  • Leon Chua
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)


In the universe of cellular automata, one can identify many concrete concepts and examples that mimic concepts and phenomena of matter in the classical, quantum, and relativistic world of physics. Historically, quantum theory started with Bohr’s atomic model of an atomic nucleus and discrete orbits of electrons, which remind us of the planetary models of antiquity. In the world of cellular automata, the discrete electron orbits around the nucleus are realized by isles of Eden. But, Bohr’s model was only a rough approximation to the real quantum world. Because of its simplicity and central symmetry, it is still used as an illustration. Bohr’s symmetry is only an approximate model. But, the exact symmetries of the quantum world lie deeper in the mathematical structure of transformation groups.


Cellular Automaton Classical Physic Symmetry Transformation Transient Regime Quantum World 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. J. Audretsch, K.(Hrsg.) Mainzer, Wieviele Leben hat Schrödingers Katze? Zur Physik und Philosophie der Quantenmechanik, 2nd edn. (Spektrum Akademischer Verlag, Heidelberg, 1996)Google Scholar
  2. J.S. Bell, On the Einstein-Podolsky-Rosen-Paradoxon. Physics 1, 195–200 (1964)Google Scholar
  3. D. Bouwmeester, A. Ekert, A. Zeilinger (eds.), The Physics of Quantum information. Quantum Cryptography, Quantum Teleportation, Quantum Computation (Springer, Berlin, 2000)Google Scholar
  4. L.O. Chua, V.I. Sbitnev, S. Yoon, A nonlinear dynamics perspective of wolfram’s new kind of science Part VI: from time-reversible attractors to the arrow of time. Int. J. Bifurcat. chaos (IJBC) 16(5), 1097–1373 (2006)Google Scholar
  5. D. Deutsch, Quantum theory, the Church-Turing principle and the universal quantum computer. Proc. R. Soc. Lond. A 400, 97–117 (1985)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. M.G. Doncel, A. Herrmann, L. Michel, A. Pais, Symmetries in Physics 1600–1980 (Servei de Publicacions, UAB Barcelona, 1987)zbMATHGoogle Scholar
  7. R.P. Feynman, The theory of positrons. Phys. Rev. 76, 749–759 (1949)MathSciNetADSzbMATHCrossRefGoogle Scholar
  8. R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  9. R. Giles, C. Thorn, Lattice approach to string theory. Phys. Rev. D 16, 366 (1977)ADSCrossRefGoogle Scholar
  10. J. Horowitz, An introduction to quantum cellular automata (2008), projects/qca.pdf
  11. T.D. Lee, C.N. Yang, Questions of Parity Conservation in Weak Interactions. Phys. Rev. 104, 254 (1956)ADSCrossRefGoogle Scholar
  12. K. Mainzer, Symmetries of Nature (De Gruyter, New York, 1996) (German 1988: Symmetrien der Natur. De Gruyter: Berlin)Google Scholar
  13. K. Mainzer, The Little Book of Time (Copernicus Books, New York, 2002)Google Scholar
  14. K. Mainzer, Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science (World Scientific, Singapore, 2005a)zbMATHCrossRefGoogle Scholar
  15. K. Mainzer, Symmetry and Complexity in Dynamical Systems. Eur. Rev. Academia Europaea 13(2), 29–48 (2005b)Google Scholar
  16. K. Mainzer, Der kreative Zufall. Wie das Neue in die Welt kommt (C.H. Beck, München, 2007)Google Scholar
  17. M. McGuigan, Quantum cellular automata from lattice field theories (2003),
  18. W. Pauli, Niels Bohr and the Development of Physics (Pergamon Press, London, 1957)Google Scholar
  19. W. Van Dam, Quantum Cellular Automata. Master’s thesis. Computing Science Institute. University of Nijmegen, The Netherlands, 1996Google Scholar
  20. J. Watrous, On one-dimensional quantum cellular automata. Proceedings of the 36th Annual Symposium on Foundations of Computer Science. IEEE Computer Society Press, Milwaukee (Wisconsin), 1995Google Scholar

Copyright information

© Klaus Mainzer 2012

Authors and Affiliations

  1. 1.Technische Unviversität München, Lehrstuhl für Philosophie und WissenschaftstheorieMunichGermany
  2. 2.EECS DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations