Advertisement

Attractors in the Universe of Cellular Automata

  • Klaus MainzerEmail author
  • Leon Chua
Chapter
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)

Abstract

One-dimensional cellular automata with L = I + 1 cells are complex systems with nonlinear dynamics determined by one of the 256 local rules N.

Keywords

Lyapunov Exponent Cellular Automaton Cellular Automaton Local Rule Transient Regime 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. S. Albeverio, V. Jentsch, H. Kantz (eds.), Extreme Events in Nature and Society (Springer, Berlin, 2006)Google Scholar
  2. K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer, New York, 1996)zbMATHGoogle Scholar
  3. L.O. Chua, V.I. Sbitnev, S. Yoon, A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IV: From Bernoulli shift to 1/f spectrum. Int. J. Bifurcat. Chaos 15(4), 1045–1183 (2005a)MathSciNetzbMATHCrossRefGoogle Scholar
  4. L.O. Chua, V.I. Sbitnev, S. Yoon, A nonlinear dynamics perspective of Wolfram’s new kind of science. Part V: Fractals everywhere. Int. J. Bifurcation Chaos 15(12), 3701–3849 (2005b)MathSciNetzbMATHCrossRefGoogle Scholar
  5. L.O. Chua, O.L. Pazienza, V.I. Sbitnev, J. Shin, A nonlinear dynamics perspective of Wolfram’s new kind of science. Part IX: Quasi-ergodicity. Int. J. Bifurcation Chaos 18(9), 2487–2642 (2008)MathSciNetADSzbMATHCrossRefGoogle Scholar
  6. R.L. Devaney, A First Course in Chaotic Dynamic Systems: Theory and Experiment (Addison-Wesley, Reading, 1992)Google Scholar
  7. B.M. Garay, L.O. Chua, Isles of Eden and the ZUK theorem in \( \mathbb{R}^{d} \). Int. J. Bifurcation Chaos 18(10), 2951–2963 (2008)Google Scholar
  8. M.W. Hirsch, S. Smale, Differential Equations, Dynamical Systems, and Linear Algebra (Academic Press, New York, 1974)zbMATHGoogle Scholar
  9. D. Kaplan, L. Glass, Understanding Nonlinear Dynamics (Springer, New York, 1995)zbMATHCrossRefGoogle Scholar
  10. K. Mainzer, Real numbers, in Numbers, ed. by H.D. Ebbinghaus, H. Hermes, F. Hirzebruch, M. Koecher, K. Mainzer, J. Neukirch, A. Prestel, R. Remmert (Springer, New York, 1990) (German editions: 1983 1st edition, 3rd edition 1992), chapter 2Google Scholar
  11. K. Mainzer, Thinking in Complexity. The Computational Dynamics of Matter, Mind, and Mankind, 5th edn. (Springer, Berlin, 2007a)zbMATHGoogle Scholar
  12. K. Mainzer, Der kreative Zufall. Wie das Neue in die Welt kommt (C.H. Beck, München, 2007b)Google Scholar
  13. K. Mainzer (ed.), Complexity. Eur. Rev. (Academia Europaea) 17(2), 219–452 (2009)Google Scholar
  14. E.F. Moore, Machine models of self-reproduction. Proc. Symp. Appl. Math. 14, 17–33 (1962)Google Scholar
  15. H. Nagashima, Y. Baba, Introduction to Chaos (Institute of Physics Publishing, Bristol, 1999)zbMATHCrossRefGoogle Scholar
  16. H. Poincaré, Les Méthodes Nouvelles de la Méchanique Célèste I–II (Gauther-Villars, Paris, 1897)Google Scholar
  17. M. Schröder, Fractals,Chaos, Power Laws (W.H. Freeman & Co, New York, 1991)zbMATHGoogle Scholar
  18. L. Shilnikov, A. Shilnikov, D. Turaev, L. Chua, Methods of Qualitative Theory in Nonlinear Dynamics I–II (World Scientific, Singapore, 1998)CrossRefGoogle Scholar
  19. T. Toffoli, N. Margolus, Invertible cellular automata: a review. Phys. D 45, 229–253 (1990)MathSciNetzbMATHCrossRefGoogle Scholar

Copyright information

© Klaus Mainzer 2012

Authors and Affiliations

  1. 1.Technische Unviversität München, Lehrstuhl für Philosophie und WissenschaftstheorieMunichGermany
  2. 2.EECS DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations