Simplicity in the Universe of Cellular Automata

  • Klaus MainzerEmail author
  • Leon Chua
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)


Because of their simplicity, rules of cellular automata can easily be understood. In a very simple version, we consider two-state one-dimensional cellular automata (CA) made of identical cells with a periodic boundary condition. In this case, the object of study is a ring of coupled cells with L = I + 1 cells, labeled consecutively from i = 0 to i = I.


Boolean Function Cellular Automaton Cellular Automaton Nonlinear Differential Equation Truth Table 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. L.O. Chua, S. Yoon, R. Dogaru, A nonlinear dynamics perspective of Wolfram’s new kind of science Part I: Threshold of complexity. Int. J. Bifurcation Chaos (IJBC) 12(12), 2655–2766 (2002)MathSciNetzbMATHCrossRefGoogle Scholar
  2. L.O. Chua, V.I. Sbitnev, S. Yoon, A nonlinear dynamics perspective of Wolfram’s new kind of science Part II: Universal neuron. Int. J. Bifurcation Chaos (IJBC) 13(9), 2377–2491 (2003)MathSciNetzbMATHCrossRefGoogle Scholar
  3. S. Wolfram, A New Kind of Science (Wolfram Media Inc, Champaign, 2002)zbMATHGoogle Scholar

Copyright information

© Klaus Mainzer 2012

Authors and Affiliations

  1. 1.Technische Unviversität München, Lehrstuhl für Philosophie und WissenschaftstheorieMunichGermany
  2. 2.EECS DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations