Introduction: Leibniz, Turing, Zuse, and Beyond

  • Klaus MainzerEmail author
  • Leon Chua
Part of the SpringerBriefs in Complexity book series (BRIEFSCOMPLEXITY)


According to Einstein, a scientific explanation should be as simple as possible, but not too simple, for it to be realistic. It would be nice to understand the great scientific problems of the universe (such as cosmic expansion, black holes, the evolution of life, and brains) with just basic knowledge. The toy world of cellular automata is an intuitive, but mathematically precise model that may be used to illustrate fundamental problems of topical research. The philosopher and mathematician Gottfried Wilhelm Leibniz (1646–1716), who constructed one of the first mechanical calculating machines, considered, even then, the universe as an automaton created by God as a divine engineer and mathematician. The theory of cellular automata was independently initiated by several computer pioneers, among them John von Neumann (1903–1957) and Konrad Zuse (1910–1995).


Cellular Automaton Turing Machine Complex Dynamical System Lambda Calculus Relative Computability 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. H.D.I. Abarbanel, Analysis of Observed Chaotic Data (Springer, New York, 1995)zbMATHGoogle Scholar
  2. S. Albeverio, V. Jentsch, H. Kantz (eds.), Extreme Events in Nature and Society (Springer, Berlin, 2006)Google Scholar
  3. K.T. Alligood, T.D. Sauer, J.A. Yorke, Chaos: An Introduction to Dynamical Systems (Springer, New York, 1996)zbMATHGoogle Scholar
  4. V.I. Arnold, Small denominators II, proof of a theorem of A.N. Kolmogorov on the preservation of conditionally-periodic motions under a small perturbation of the Hamiltonian. Russ. Math. Surveys 18, 5 (1963)ADSGoogle Scholar
  5. J. Audretsch, K. Mainzer (Hrsg.) Wieviele Leben hat Schrödingers Katze? Zur Physik und Philosophie der Quantenmechanik, 2nd edn. (Spektrum Akademischer Verlag, Heidelberg, 1996)Google Scholar
  6. H.-J. Bungartz, S. Zimmer, M. Buchholz, D. Pflüger, Modellbildung und Simulation. Eine anwendungsorientierte Einführung (Springer, Berlin, 2009)zbMATHGoogle Scholar
  7. A.W. Burks (ed.), Cellular Automata (University of Illinois Press, Urbana, 1970)zbMATHGoogle Scholar
  8. L.O. Chua, CNN: A Paradigm for Complexity (World Scientific, Singapore, 1998)zbMATHCrossRefGoogle Scholar
  9. A. Church, A note on the Entscheidungsproblem. J. Symb. Log. 1, 40–41 (1936)zbMATHCrossRefGoogle Scholar
  10. S. Feferman (ed.), Kurt Gödel: Collected Works (Oxford University Press, Oxford, 1986), pp. 144–195Google Scholar
  11. R. Feynman, Simulating physics with computers. Int. J. Theor. Phys. 21(6–7), 467–488 (1982)MathSciNetCrossRefGoogle Scholar
  12. E. Fredkin, Digital Mechanics: An informational process based on reversible universal CA. Physica D 45:254–270 (1990)MathSciNetADSzbMATHCrossRefGoogle Scholar
  13. R. Gandy, C.E.M. Yates (eds.) Collected Works of A. M. Turing (North-Holland, Amsterdam 1992–2001)Google Scholar
  14. M. Gardner, The fantastic combinations of John Conway’s new solitaire game of life. Sci. Am. 223, 120–123 (1970)CrossRefGoogle Scholar
  15. M. Gardner, Mathematical games: on cellular automata, self-reproduction, the Garden of Eden, and the game “Life”. Sci. Am. 224, 112–117 (1971)CrossRefGoogle Scholar
  16. R. Herken (ed.) The Universal Turing Machine. A Half-Century Survey, 2nd edn. (Springer, Wien 1995)zbMATHGoogle Scholar
  17. A.G. Hoekstra, J. Kroc, P.M.A. Sloot (eds.), Simulating Complex Systems by Cellular Automata (Springer, Berlin, 2010)zbMATHGoogle Scholar
  18. A.N. Kolmogorov, On conservation of conditionally-periodic motions for a small change in Hamilton’s function. Dokl. Akad. Nauk. USSR 98, 525 (1954)MathSciNetGoogle Scholar
  19. K. Mainzer, ComputerNeue Flügel des Geistes? (De Gruyter, Berlin 1994)Google Scholar
  20. K. Mainzer, Computerphilosophie (Junius, Hamburg, 2003)Google Scholar
  21. K. Mainzer, Symmetry and Complexity: The Spirit and Beauty of Nonlinear Science (World Scientific, Singapore, 2005)zbMATHCrossRefGoogle Scholar
  22. K. Mainzer, Thinking in Complexity. The Computational Dynamics of Matter, Mind, and Mankind, 5th edn. (Springer, Berlin, 2007a)zbMATHGoogle Scholar
  23. K. Mainzer, Der kreative Zufall. Wie das Neue in die Welt kommt (C.H. Beck, München, 2007b)Google Scholar
  24. K. Mainzer, Komplexität (UTB-Profile, Paderborn, 2008)Google Scholar
  25. K. Mainzer (ed.), Complexity. Eur. Rev. (Academia Europaea) 17(2), 219–452 (2009)Google Scholar
  26. K. Mainzer, Leben als Maschine? Von der Systembiologie zur Robotik und Künstlichen Intelligenz (Mentis, Paderborn, 2010)Google Scholar
  27. K. Mainzer, Mathematischer Konstruktivismus. Dissertation Universität Münster (1973)Google Scholar
  28. M. Minsky, Size and structure of universal Turing machines using tag systems, recursive function theory. Proceedings Symposium in Pure Mathematics, vol. 5 (American Mathematical Society, Providence RI), pp. 229–238 (1962)Google Scholar
  29. J. Moser, Convergent series expansions of quasi-periodic motions. Math. Ann. 169, 163 (1967)CrossRefGoogle Scholar
  30. J.V. Neumann, Theory of Self-Reproducing Automata (University of Illinois Press, Urbana, 1966)Google Scholar
  31. P. Petrov, Church-Turing thesis as an immature form of Zuse-Fredkin thesis. (More arguments in favour of the ‘universe as a cellular automaton’ idea). 3rd WSEAS International Conference on Systems Theory and Scientific Computation. Special session on cellular automata and applications (2003) (online version:
  32. H. Poincaré, Les Méthodes Nouvelles de la Méchanique Célèste I-II (Gauther-Villars, Paris, 1897)Google Scholar
  33. J. Schmidhuber, A computer scientist’s view of life, the universe, and everything. Lecture Notes in Computer Science (Springer, Berlin, 1997), pp. 201–208Google Scholar
  34. C. Shannon, in A Universal Turing Machine With Two Internal States. Automata Studies (Princeton University Press, Princeton, 1956), pp. 157–165Google Scholar
  35. M. Small, Applied Nonlinear Time Series Analysis: Applications in Physics, Physiology and Finance (World Scientific, Singapore, 2005)zbMATHCrossRefGoogle Scholar
  36. T. Toffoli, N. Margolus, Cellular Automata Machines: A New Environment for Modeling (MIT Press, Cambridge, 1987)Google Scholar
  37. B.A. Toole, Ada, the Enchantress of Numbers (Strawberry Press, Mill Valley, CA, 1992)Google Scholar
  38. A.M. Turing, Computability and λ-definability. J. Symb. Log. 2, 153–163 (1937)zbMATHCrossRefGoogle Scholar
  39. A.M. Turing, Systems of logic based on ordinals. Proc. Lond. Math. Soc. 2(45), 161–228 (1939)CrossRefGoogle Scholar
  40. A.M. Turing, The chemical basis of morphogenesis. Philos. Trans. Royal Soc. Lond. Ser. B, Biol. Sci. 237(641), 37–72 (1952)ADSCrossRefGoogle Scholar
  41. A.M. Turing, On computable numbers with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. 42(2) 230–265, corrections, ibid, 43, 544–546 (1936/1937)Google Scholar
  42. N. Wiener, A. Rosenbluth, The mathematical formulation of the problem of conduction of impulses in a network of connected excitable elements, specifically in cardiac muscle. Arch. Inst. Cardiol. Mex. 16, 205–265 (1946)Google Scholar
  43. S. Wolfram, Theory and Applications of Cellular Automata (World Scientific, Singapore, 1986)zbMATHGoogle Scholar
  44. S. Wolfram, Cellular Automata and Complexity (Addison–Wesley, Reading, 1994)zbMATHGoogle Scholar
  45. S. Wolfram, A New Kind of Science (Wolfram Media, Champaign, 2002)zbMATHGoogle Scholar
  46. R. Wright, Three Scientists and Their Gods: Looking for Meaning in an Age of Information (HarperCollins, New York, 1989)Google Scholar
  47. K. Zuse, Rechnender Raum (Friedrich Vieweg & Sohn, Braunschweig, 1969)zbMATHGoogle Scholar

Copyright information

© Klaus Mainzer 2012

Authors and Affiliations

  1. 1.Technische Unviversität München, Lehrstuhl für Philosophie und WissenschaftstheorieMunichGermany
  2. 2.EECS DepartmentUniversity of CaliforniaBerkeleyUSA

Personalised recommendations