Skip to main content

Identity Criterion for Living Objects Based on the Entanglement Measure

  • Chapter
Semantic Methods for Knowledge Management and Communication

Part of the book series: Studies in Computational Intelligence ((SCI,volume 381))

  • 921 Accesses

Abstract

We extend the original Gecow’s computational theory of life and introduce a formal specification language that provides structural and operational semantics for further experimentation on complex evolving systems. The formalisation is based on Milner’s process calculus called π-calculus in conjunction with the notion of reactive systems and formal process algebra.

In addition, we provide formal object boundary and identity criterion that can be used to isolate an object in a complex computational dynamical system from its environment. To achieve that, we use a formal notion of entanglement, borrowed from graph theory, to identify objects within a complex and changeable computational environment characterised by multiple scales of abstraction. This allows the model to be re-implemented and used for investigations on scale-free, self-adapting, self-evolving computational systems without an explicit notions such as object, organism, fitness, or purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adami, C.: Introduction to Artificial Life. Springer, Heidelberg (1997)

    Google Scholar 

  2. Baeten, J.: A brief history of process algebra. Theoretical Computer Science 335(2-3), 131–146 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berwanger, D., Grädel, E.: Entanglement–a measure for the complexity of directed graphs with applications to logic and games. In: Logic for programming, artificial intelligence, and reasoning, pp. 209–223. Springer, Heidelberg (2005)

    Google Scholar 

  4. Chaitin, G.J.: Toward a mathematical definition of “life”. In: Levine, R.D., Tribus, M. (eds.) The Maximum Entropy Formalism, pp. 477–498. MIT Press, Cambridge (1979)

    Google Scholar 

  5. Emmeche, C.: Life is an abstract phenomenon: is artificial life possible? In: Varela, F.J., Bourgine, P. (eds.) Proceedings of the First European Conference on Artificial Life, pp. 466–474. MIT Press, Cambridge (1992)

    Google Scholar 

  6. Gecow, A., Nowostawski, M., Purvis, M.: Structural tendencies in complex systems development and their implication for software systems. Journal of Universal Computer Science 11(2), 327–356 (2005)

    Google Scholar 

  7. Gecow, A.: Structural Tendencies – effects of adaptive evolution of complex (chaotic) systems. Int. J. Mod. Phys. C 19(4), 647–664 (2008)

    Article  MATH  Google Scholar 

  8. Gecow, A.: Emergence of Growth and Structural Tendencies During Adaptive Evolution of System. In: Aziz-Alaoui, M., Bertelle, C. (eds.) From System Complexity to Emergent Properties, pp. 211–241. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  9. Gecow, A.: The differences between natural and artificial life towards a definition of life. arXiv (1012.2889) (2010)

    Google Scholar 

  10. Harel, D., Pnueli, A.: On the development of reactive systems. In: Logics and Models of Concurrent Systems, vol. 13, pp. 471–498. NATO Advanced Study Institute (1985)

    Google Scholar 

  11. Kauffman, S.A.: The origins of order: self-organization and selection in evolution. Oxford Press, New York (1993)

    Google Scholar 

  12. Knottenbelt, W.J., Bradley, J.T.: Tackling large state spaces in performance modelling. In: Bernardo, M., Hillston, J. (eds.) SFM 2007. LNCS, vol. 4486, pp. 318–370. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  13. Korzeniewski, B.: Cybernetic formulation of the definition of life. Journal of Theoretical Biology 209, 275–286 (2001)

    Article  Google Scholar 

  14. Margulis, L., Sagan, D.: What is life? Simon and Schuster, New York (1995)

    Google Scholar 

  15. Milner, R.: A Calculus of Communicating Systems. In: Jones, N.D. (ed.) Semantics-Directed Compiler Generation. LNCS, vol. 94, Springer, Heidelberg (1980)

    Google Scholar 

  16. Milner, R.: Communication and concurrency. Prentice-Hall, Inc., Upper Saddle River (1989)

    MATH  Google Scholar 

  17. Milner, R.: Communicating and mobile systems: the π-calculus. Cambridge University Press, Cambridge (1999)

    Google Scholar 

  18. Muller, H.J.: The gene material as the initiator and organizing basis of life. American Naturalist 100, 493–517 (1966)

    Article  Google Scholar 

  19. von Neumann, J.L., Burks, A.W.: Theory of self-reproducing automata (1966)

    Google Scholar 

  20. Nowostawski, M., Epiney, L., Purvis, M.: Self-Adaptation and Dynamic Environment Experiments with Evolvable Virtual Machines. In: Brueckner, S.A., Di Marzo Serugendo, G., Hales, D., Zambonelli, F. (eds.) ESOA 2005. LNCS (LNAI), vol. 3910, pp. 46–60. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  21. Nowostawski, M., Purvis, M.K.: Evolution and Hypercomputing in Global Distributed Evolvable Virtual Machines Environment. In: Brueckner, S.A., Hassas, S., Jelasity, M., Yamins, D. (eds.) ESOA 2006. LNCS (LNAI), vol. 4335, pp. 176–191. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Nowostawski, M., Purvis, M.K., Cranefield, S.: An architecture for self-organising evolvable virtual machines. In: Brueckner, S.A., Di Marzo Serugendo, G., Karageorgos, A., Nagpal, R. (eds.) ESOA 2005. LNCS (LNAI), vol. 3464, pp. 100–122. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  23. Prigogine, I., Stengers, I.: Order out of chaos: man’s new dialog with nature. Bantam Books (1984)

    Google Scholar 

  24. Sangiorgi, D., Walker, D.: The π-calculus: A Theory of Mobile Processes. Cambridge University Press, Cambridge (2001)

    Google Scholar 

  25. Schrödinger, E.: What is life?: the physical aspect of the living cell. University Press, Cambridge (1945)

    Google Scholar 

  26. Smith, J.M., Szathmary, E.: The major transitions in evolution. W.H. Freeman, Oxford (1995)

    Google Scholar 

  27. Wittgenstein, L.J.J.: Philosophical Investigations. Basil Blackwell, Malden (1953)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nowostawski, M., Gecow, A. (2011). Identity Criterion for Living Objects Based on the Entanglement Measure. In: Katarzyniak, R., Chiu, TF., Hong, CF., Nguyen, N.T. (eds) Semantic Methods for Knowledge Management and Communication. Studies in Computational Intelligence, vol 381. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23418-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23418-7_15

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23417-0

  • Online ISBN: 978-3-642-23418-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics