Skip to main content

Air Density and Buoyancy Correction

  • Chapter
  • First Online:
  • 925 Accesses

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 155))

Abstract

Two weights (standards of mass) are compared usually in air. Upward buoyancy forces act on each weight separately; the values of these upward forces are proportional to the product of the respective volumes of the two weights and air density at the time of comparison. Weights of same nominal value have different volumes if their density is not equal. Volume of a stainless steel 1-kg weight differs from that of the platinum iridium mass standard by about 85 cm3.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. A. Picard, H. Fang, Three methods of determining the density of moist air during mass comparisons. Metrologia 39, 31–40 (2002) Preparatory Documents

    Article  ADS  Google Scholar 

  2. T.J. Quinn, Rapport sur la reunion concernant les masses. BIPM 23, 25 (et 24 novembre 1976)

    Google Scholar 

  3. T.J. Quinn, Proces-verbaux. CIPM 45, Al–A24 (1977)

    Google Scholar 

  4. F.E. Jones, The Air Density Equation and the Transfer of the Mass Unit. (Publ. NBSIR 77–1278 du NBS, 1977), p. 28

    Google Scholar 

  5. F.E. Jones1, The air density equation and the transfer of the mass unit. J. Res. Nat. Bur. Stand. 83, 419–429 (1978)

    Article  Google Scholar 

  6. M. Kochsiek, Uber die Luftauftriebskorrektion bei der Weitergabe der Masseneinheit, vol. Me-1 5 (PTB-Bericht, 1977), p. 44

    Google Scholar 

  7. P. Riety, La determination de la masse volumique de l’air humide. Document d’etude du groupe de travail. Rapport INM 77–1, 1977, p. 55 Air Density Equations

    Google Scholar 

  8. P. Caree, Note sur l’incertitude de la formule pour la determination de la masse volumique de l’air. Rapport BIPM-78/8, Decembre 1978–mai 1979, p. 11

    Google Scholar 

  9. P. Giacoma, Equation for determination of the density of air of moist air (1981). Metrologia 18, 33–40 (1982)

    Article  ADS  Google Scholar 

  10. R.S. Davis, Equation for the determination of the density of air (1981/91). Metrologia 29, 67–70 (1992) Behaviour of Humid Air

    Article  ADS  Google Scholar 

  11. A. Picard, R.S. Davis, M. Gläser, K. Fujii, Revised formula for the density of moist air (CIPM-2007). Metrologia 45, 149–155 (2008) Molar Gas Constant

    Article  ADS  Google Scholar 

  12. L.P. Harrison, in Fundamental Concepts and Definitions Relating to Humidity, ed. by W. Wexler. Humidity and Moisture (Reinhold Publication Corp., New York, 1965)

    Google Scholar 

  13. P.J. Mohr, B.N. Taylor, CODATA recommended values of the fundamental physical constants 2002 Rev. Mod. Phys. 77, 1–107 (2005)

    Article  ADS  Google Scholar 

  14. P.J. Mohr, B.N. Taylor, D.B. Newell, CODATA recommended values of the fundamental physical constants 2006 Rev. Mod. Phys. 80, 633–730 (2008)

    Article  ADS  Google Scholar 

  15. T.J. Quinn, A.R. Colclough, T.R.D. Chandler, A new determination of the gas constant by an acoustical method. Philos. Trans. R. Soc. London A. 283, 367–420 (1976)

    Article  ADS  Google Scholar 

  16. A.R. Colclough, T.J. Quinn, T.R.D. Chandler, An acoustic re-determination of the gas constant. Proc. Roy. Soc. London A.368, 125–139 (1979) Composition and Molar Mass of Dry Air

    Article  ADS  Google Scholar 

  17. B.E. Gammon, The velocity of sound with derived state properties in helium at—175 to 159 C with pressure to 150 atm. J. Chem. Phys. 64, 2556–2568 (1976)

    Article  ADS  Google Scholar 

  18. E.R. Cohen, P.N. Taylor, The 1973 least-squares adjustment of the fundamental constants. J. Phys. Chem. Ref. Data. 2, 663–734 (1973)

    Article  ADS  Google Scholar 

  19. A. Leduc, La masse du litre d’air dans les conditions normales. Trav. Mem. Bur. Int. Poids Mes. XVI, 7–37 (1917)

    Google Scholar 

  20. O.F. Tower, La proportion d’oxygene dans l’air est-eHe constante. J. Chim. Phys. 11, 249–259 (1913)

    Article  Google Scholar 

  21. E.W. Morley, On a possible cause of the variations observed in the amount of oxygen in the air. Am. J. Sci. 22, 417–438 (1881)

    Article  ADS  Google Scholar 

  22. G.S. Callendar, Variations of the amount of carbon dioxide in different air currents. Q. J. R. Meteorol. Soc. 66, 395–400 (1940)

    Article  ADS  Google Scholar 

  23. F.A. Paneth, The chemical composition of the atmosphere. Q. J. R. Meteorol. Soc. 63, 433–438 (1937)

    Article  ADS  Google Scholar 

  24. E. Glueckauf, The composition of atmospheric air, in Compendium of Meteorology (Am. Meteorol. Soc., Boston, 1951), pp. 3–10 (XVI,pp. 7–37)

    Google Scholar 

  25. L. Machta, E. Hugues, Atmospheric oxygen in 1967 to Science 168, 1582–1584 (1970)

    Google Scholar 

  26. USStandard Atmosphere US Government Printing Office, Washington D.C., p. 3, p. 33 Mole Fraction of Argon

    Google Scholar 

  27. K.F. Chackett, F.A. Paneth, E.J. Wilson, Chemical composition of the stratosphere at 70 km height. Nature 164, 128–129 (1949)

    Article  ADS  Google Scholar 

  28. S. Oana, Bestimmung des Argons im besonderen Hinblick auf geloste Gase in naturlichen Wassern. J. Earth Sci. Nayoga Univ. 5, 103–124 (1957)

    Google Scholar 

  29. A. Picard, H. Fang, M. Gläser, Discrepancies in air density determination between the thermodynamic formula and a gravimetric method: evidence for a new value of the mole fraction of argon in air. Metrologia 41(6), 396–400 (2004)

    Article  ADS  Google Scholar 

  30. S.Y. Park, J.S. Kim, J.B. Lee, M.B. Esler, R.S. Davis, R.I. Wielgosz, A re-determination of the argon content of air for buoyancy corrections in mass standard comparisons. Metrologia 41(6), 387–395 (2004) Compressibility and Saturated Vapour Pressure of Moist Air

    Article  ADS  Google Scholar 

  31. C. Sutour, C. Stumpf, J.P. Kosinski, A. Surget, G. Hervouët, C. Yardin, T. Madec, A. Gosset, Determination of the argon concentration in ambient dry air for the calculation of air density. Metrologia 44, 448–452 (2007)

    Article  ADS  Google Scholar 

  32. M.E. Wieser, Atomic weights of the elements 2005 (IUPAC technical report). Pure Appl. Chem. 78, 2051–2066 (2006)

    Article  Google Scholar 

  33. A. Wexler, Vapor pressure formulation for water in range 0 to 100 ∘ C. A revision. J. Res. Nat. Bur. Stand. 80A, 775–785 (1976) Artefacts

    Article  Google Scholar 

  34. L. Greenspan, Functional equations for the enhancement factors for CO2-free moist air. J. Res. Nat. Bur. Stand. 80A, 41–44 (1976)

    Article  Google Scholar 

  35. R.W. Hyland, A correlation for the second interaction virial coefficients and enhancement factors for moist air. J. Res. Nat. Bur. Stand. 79A, 551–60 (1975)

    Article  Google Scholar 

  36. A. Picard, H. Fang, Mass comparisons using air buoyancy artefacts. Metrologia 41(4), 330–332 (2004)

    Article  ADS  Google Scholar 

  37. S. Mizushima, M. Ueki, Y. Nezu, A. Ooiwa, Performance of the new prototype balance of the NRLM, in Proceedings IMEKO, 2000 TC3

    Google Scholar 

  38. Y. Kobayashi, Precision Measurement and Fundamental Constants, ed. by B.N. Taylor, W.D. Phillips (NBS Special Publication 617, USA, 1984), pp. 441–443 Refractometer

    Google Scholar 

  39. M. Glaser, R. Schwartz, M. Mecke, Experimental determination of air density using 1 kg mass comparator in vacuum. Metrologia 28, 45–50 (1991)

    Article  ADS  Google Scholar 

  40. S. Davidson, NPL UK-2007, Personal communication and the website, www.npl.co.uk on mass

  41. H. Fang, P. Juncar, A new simple compact refractometer applied to measurements of air density fluctuations. Rev. Sci. Instrum. 70, 3160–3166 (1999)

    Article  ADS  Google Scholar 

  42. L.R. Pendrill, Refractometry and gas density, Metrologia 41(2), S40–S51 (2004)

    Article  ADS  Google Scholar 

  43. L.R. Pendrill, S.P. Boras, Density of moist air monitored by laser refractometry. Metrologia 25, 87–93 (1988)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. V. Gupta .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Gupta, S.V. (2012). Air Density and Buoyancy Correction. In: Mass Metrology. Springer Series in Materials Science, vol 155. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23412-5_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23412-5_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23411-8

  • Online ISBN: 978-3-642-23412-5

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics