Advertisement

Energy Carrier Networks: Interactions and Integrated Operational Planning

  • Ricardo Rubio-Barros
  • Diego Ojeda-Esteybar
  • Alberto VargasEmail author
Chapter
  • 1.3k Downloads
Part of the Energy Systems book series (ENERGY)

Abstract

The integration of natural gas (NG) and electricity sectors has rapidly increased as a consequence of the growing installation of natural gas fired power plants (NGFPP). This has driven the need to model the interactions among the energy carriers and to optimize energy resources management from a centralized planning perspective. Currently, electricity and NG systems are considered in a decoupled manner. NG prices and availabilities for the electric power generation are used as fixed parameters for the needed coordination between both energy sectors. This chapter presents a comprehensive literature survey of previous research on integrated electricity and NG operational planning. The relevant characteristics of NG and electricity systems are compared considering the physical laws that govern the flows of these energy carriers through dedicated networks. The interactions among the energy carriers and their networks are modeled with different levels of detail according to the evaluated time horizon. The integrated operational planning problem of multiple energy carriers systems is comprehensively described and formulated, covering from the long/medium-term energy resource scheduling to the single period economic dispatch. Finally, a contribution is made about the economic interactions between different energy carriers (electricity, NG, and hydro energy) through opportunity costs such as water and NG values.

Keywords

Economic dispatch Electricity-gas integration Energy carrier networks Energy systems modeling Integrated operational planning Natural gas system optimization 

References

  1. 1.
    Munasinghe M, Meier P (1993) Energy policy analysis and modeling. Cambridge University Press, Cambridge, MACrossRefGoogle Scholar
  2. 2.
    Loulou R, Remne U, Kanudia A, Lehtila A, Goldstein G (2005) Documentation for the TIMES Model, Part I. Energy Technology Systems Analysis Programme [Online]. Available: http://www.etsap.org. [Accessed: 28 Agu 2009]
  3. 3.
    Messner S, Schrattenholzer L (2005) MESSAGE-MACRO: linking an energy supply model with a macroeconomic model and solving it inter-actively. Energy 25:267–282CrossRefGoogle Scholar
  4. 4.
    CEEESA (2008) Overview of the Energy and Power Evaluation Program (ENPEP-BALANCE). Center for Energy, Environmental, and Economic Systems Analysis (CEEESA), Argonne National Laboratory, [Online]. http://www.dis.anl.gov/projects/Enpepwin.html [Accessed: 15 Nov 2008]
  5. 5.
    SEI (2006) LEAP: User Guide. Stockholm Environmental Institute, [Online]. Available: www.energycommunity.org/documents/Leap2006UserGuideEnglish_OnlinePDF.pdf [Accessed: 08 Mar 2008]
  6. 6.
    van Beeck N (1999) Classification of energy models. Tilburg University and Eindhoven University of Technology, The NetherlandsGoogle Scholar
  7. 7.
    Bakken H, Skjelbred HI, Wolfgang O (2007) eTransport: investment planning in energy supply systems with multiple energy carriers. Energy 32:1676–1689CrossRefGoogle Scholar
  8. 8.
    Hecq S, Bouffioulx Y, Doulliez P, Saintes P (2001) The integrated planning of the natural gas and electricity systems under market conditions. In: Proceedings of the IEEE power engineering society PowerTech, Porto, 2001Google Scholar
  9. 9.
    Unsihuay C, Marangon-Lima JW, Zambroni de Souza AC (2007) Integrated power generation and natural gas expansion planning. In Proceedings of the IEEE power engineering society PowerTech, Lausanne, 2007Google Scholar
  10. 10.
    International Energy Agency (2007) Natural gas market review 2007. IEA/OECD Publications, ParisCrossRefGoogle Scholar
  11. 11.
    International Energy Agency (2008) Electricity information 2008. IEA/OECD Publications, ParisCrossRefGoogle Scholar
  12. 12.
    International Energy Agency (2008) World energy outlook 2008. IEA/OECD Publications, ParisCrossRefGoogle Scholar
  13. 13.
    International Energy Agency (2009) Natural gas market review 2009. IEA/OECD Publications, ParisCrossRefGoogle Scholar
  14. 14.
    Shahidehpour M, Fu Y, Wiedman T (2005) Impact of natural gas infrastructure on electric power systems. Proc IEEE 93(5):1042–1056CrossRefGoogle Scholar
  15. 15.
    Chen H, Baldick R (2007) Optimizing short-term natural gas supply portfolio for electric utility companies. IEEE Trans Power Syst 22:232–239CrossRefGoogle Scholar
  16. 16.
    Street A, Barroso LA, Chabar R, Mendes ATS, Pereira MV (2008) Pricing flexible natural gas supply contracts under uncertainty in hydrothermal market. IEEE Trans Power Syst 23:1009–1017CrossRefGoogle Scholar
  17. 17.
    Takriti S, Supatgiat C, Wu LS-Y (2001) Coordination fuel inventory and electric power generation under uncertainty. IEEE Trans Power Syst 16:603–608CrossRefGoogle Scholar
  18. 18.
    Morais MS, Marangon Lima JW (2003) Natural gas network pricing and its influence on electricity and gas markets. In: Proceedings of the IEEE power engineering society PowerTech, Bologna, 2003Google Scholar
  19. 19.
    Morais MS, Marangon Lima JW (2007) Combined natural gas and electricity network pricing. Elec Power Syst Res 77:712–719CrossRefGoogle Scholar
  20. 20.
    Rubio R, Ojeda-Esteybar D, Añó O, Vargas A (2008) Integrated natural gas and electricity market: a survey of the state of the art in operation planning and market issues. In: Proceedings of 2008 IEEE/PES transmission and distribution conference and exposition: Latin America, Bogotá, 2008, pp 1–8Google Scholar
  21. 21.
    Quelhas A, Gil E, McCalley JD, Ryan SM (2007) A multiperiod generalized network flow model of U.S. Integrated energy system: part I – model description. IEEE Trans Power Syst 22:829–836CrossRefGoogle Scholar
  22. 22.
    Gil EM, Quelhas AM, McCalley JD, Voorhis TV (2003) Modeling integrated energy transportation networks for analysis of economic efficiency and network interdependencies. In: Proceedings of North American power symposium (NAPS), Rolla, 2003Google Scholar
  23. 23.
    Correia P, Lyra C (1992) Optimal scheduling of a multi-branched interconnected energy system. IEEE Trans Power Syst 7:1225–1231CrossRefGoogle Scholar
  24. 24.
    Bezerra B, Kelman R, Barroso LA, Flash B, Latore ML, Campodónico N, Pereira MVF (2006) Integrated electricity-gas operations planning in hydrothermal systems. In: Proceedings of X SEPOPE, Florianópolis 2006Google Scholar
  25. 25.
    Unsihuay C, Marangon-Lima JW, Zambroni de Souza AC (2007) Short-term operation planning of integrated hydrothermal and natural gas systems. In: Proceedings of the IEEE power engineering society PowerTech, Lausanne, 2007Google Scholar
  26. 26.
    Li T, Erima M, Shahidehpour M (2008) Interdependency of natural gas network and power system security. IEEE Trans Power Syst 23:1817–1824CrossRefGoogle Scholar
  27. 27.
    Liu C, Shahidehpour M, Fu Y, Li Z (2009) Security-constrained unit commitment with natural gas transmission constraints. IEEE Trans Power Syst 24:1523–1536CrossRefGoogle Scholar
  28. 28.
    Chaudry M, Jenkins N, Strbac G (2008) Multi-time period combined gas and electricity network optimisation. Elec Power Syst Res 78:1265–1279CrossRefGoogle Scholar
  29. 29.
    An S, Li Q, Gedra TW (2003) Natural gas and electricity optimal power flow. In: Proceedings of the IEEE power engineering society transmission and distribution conference, Dallas, 2003Google Scholar
  30. 30.
    Unsihuay C, Marangon Lima JW, Zambroni de Souza AC (2007) Modeling the integrated natural gas and electricity optimal power flow. In: Proceedings of the IEEE power engineering society general meeting, Tampa, 2007Google Scholar
  31. 31.
    Mello OD, Ohishi T (2006) An integrated dispatch model of gas supply and thermoelectric generation with constraints on the gas supply. In: Proceedings of X SEPOPE, Florianópolis, 2006Google Scholar
  32. 32.
    Munoz J, Jimenez-Redondo N, Perez-Ruiz J, Barquin J (2003) Natural gas network modeling for power systems reliability studies. In: Proceedings of the IEEE power engineering society PowerTech, Bologna, 2003Google Scholar
  33. 33.
    Geidl M, Andersson G (2007) Optimal power flow of multiple energy carriers. IEEE Trans Power Syst 22:145–155CrossRefGoogle Scholar
  34. 34.
    Hajimiragha A, Canizares C, Fowler M, Geidl M, Andersson G (2007) Optimal energy flow of integrated energy systems with hydrogen economy considerations. In: Proceedings of bulk power system dynamics and control – VII, Charlestone, 2007Google Scholar
  35. 35.
    Rajabi H, Mohtashasmi S (2009) Economic dispatch problem considering natural gas transportation cost. Proc World Acad Sci Eng Technol 38:1482–1487Google Scholar
  36. 36.
    Ojeda-Esteybar D, Rubio-Barros R, Añó O, Vargas A (2009) Despacho óptimo integrado de sistemas de gas natural y electricidad: comparación con un despacho desacoplado y aplicación al sistema argentino. In: Proceedings of the XIII ERIAC, Puerto Iguazú, 2009Google Scholar
  37. 37.
    Rubio-Barros R, Ojeda-Esteybar D, Añó O, Vargas A (2009) Identificación de los parámetros para la coordinación de los despachos de los sistemas eléctricos y de gas natural. In: Proceedings of the XIII CLAGTEE, Ubatuba, 2009Google Scholar
  38. 38.
    ISO 13600:1997 (1997) Technical energy systems – basic concepts, International Organization for StandardizationGoogle Scholar
  39. 39.
    Bergen AR, Vittal V (2000) Power systems analysis, 2nd edn. Prentice-Hall, Englewood CliffsGoogle Scholar
  40. 40.
    Wood AJ, Wollenberg BF (1996) Power generation, operation and control, 2nd edn. Wiley, New YorkGoogle Scholar
  41. 41.
    Gómez-Expósito A, Conejo AJ, Cañizares CA (2009) Electric energy systems analysis and operation. CRC, Boca RatonGoogle Scholar
  42. 42.
    Stott B, Jardim J, Alsaç O (2009) DC power flow revisited. IEEE Trans Power Syst 24:1290–1300CrossRefGoogle Scholar
  43. 43.
    Scheweppe FC, Caramanis MC, Tabors RD, Bohn RE (1988) Spot pricing of electricity. Kluwer, NorwellCrossRefGoogle Scholar
  44. 44.
    Osiadacz AJ (1987) Simulation and analysis of gas networks. E. & F. N. Spon, LondonzbMATHGoogle Scholar
  45. 45.
    Menon ES (2004) Gas pipelines hydraulics. Marcel Dekker, New YorkCrossRefGoogle Scholar
  46. 46.
    Osiadacz AJ (1996) Different transient models- limitations, advantages and disadvantages. In: Proceedings of the PSIG, 28th annual meeting, San Francisco, 1996Google Scholar
  47. 47.
    Osiadacz AJ (1994) Dynamic optimization of high pressure gas networks using hierarchical system theory. In: Proceedings of the PSIG, 26th annual meeting, San Diego, 1994Google Scholar
  48. 48.
    Wong PJ, Larson RE (1968) Optimization of natural-gas pipeline systems via dynamic programming. IEEE Trans Autom Control AC-13(5):475–481CrossRefGoogle Scholar
  49. 49.
    Varian HR (2006) Intermediate microeconomics, 7th edn. W. W. Norton, New YorkGoogle Scholar
  50. 50.
    Ferrero R, Vargas A, Añó O, Rivera JF (1995) Valor del agua: Marco conceptual. In: Proceedings of VI ERLAC (CIGRÉ), Foz do Iguacu, 1995Google Scholar
  51. 51.
    Pereira M, Campodónico N, Kelman R (1998) Long-term hydro scheduling based on Stochastic models. In: EPSOM’98, Zurich, 23–25 Sept 1998Google Scholar
  52. 52.
    Gardner J, Hobbs W, Lee FN, Leslie E, Streiffert D, Todd D (1995) Summary of the panel session “Coordination between short-term operation scheduling and annual resource allocations”. IEEE Trans Power Syst 10:1879–1889CrossRefGoogle Scholar
  53. 53.
    Reneses J, Centeno E, Barquín J (2006) Coordination between medium-term generation planning and short-term operation in electricity markets. IEEE Trans Power Syst 21:43–52CrossRefGoogle Scholar
  54. 54.
    Osiadacz AJ (1983) Optimal numerical method for simulating dynamic flow of gas in pipelines. Int J Numer Meth Fluids 3:125–135CrossRefzbMATHGoogle Scholar
  55. 55.
    Fishmann GS (1999) Monte Carlo, concepts, algorithms and applications. Springer, New York/Berlin/Heidelberg, pp 19–26Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Ricardo Rubio-Barros
    • 1
  • Diego Ojeda-Esteybar
    • 1
  • Alberto Vargas
    • 1
    Email author
  1. 1.Instituto de Energía Eléctrica, Facultad de IngenieríaUniversidad Nacional de San JuanSan JuanArgentina

Personalised recommendations