Skip to main content

Complex Phenotypes: Epigenetic Manifestation of Environmental Exposures

  • Chapter
  • First Online:
Environmental Epigenomics in Health and Disease

Part of the book series: Epigenetics and Human Health ((EHH))

Abstract

Environmental influences in early development alter the epigenome and lead to complex phenotypes and disease susceptibility throughout the life course. Five primary factors, including nutrition, behavior, stress, toxins, and stochasticity, act to influence the epigenome during this critical period. To illustrate how changes in early environment can dramatically affect the epigenome, we provide examples from diverse members of the animal kingdom, spanning insects to human. Specific to mammalian early embryogenesis, DNA methylation, and other epigenetic marks are reset at two specific times in distinct cell lineages leading to epigenetic programming of gametic and somatic cells. These two waves of genomic demethylation and reestablishment of methylation frame the sensitive times for early environmental influences. Evaluating the complex effects of environmental exposures on the developing epigenome requires novel and comprehensive approaches. In this chapter we outline a strategy for the evaluation of environmentally induced epigenetic effects across animal models and human samples, highlighting the necessity for careful assessment of dose and resulting phenotypic changes across the life course. Herein we review the history, environmental factors, critical time points, and vulnerable genomic structures of epigenome–environment interactions. We also provide a framework to further explore epigenomic changes and translate this knowledge from mouse to man.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

BPA:

Bisphenol A

CDK:

Cyclin-dependent kinase

DMR:

Differentially methylated region

DOHaD:

Developmental origins of health and disease

GR:

Glucocorticoid receptor

IAP:

Intracisternal A-particle

LTR:

Long terminal repeat

PGC:

Primordial germ cells

PRC2:

Polycomb repressive complex 2

RAMs:

Regions of altered methylation

tRNA:

Transfer RNA

References

  • Anway MD, Cupp AS, Uzumcu M, Skinner MK (2005) Epigenetic transgenerational actions of endocrine disruptors and male fertility. Science 308:1466–1469

    Article  PubMed  CAS  Google Scholar 

  • Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8:227

    Article  PubMed  Google Scholar 

  • Barker DJ, Eriksson JG, Forsen T, Osmond C (2002) Fetal origins of adult disease: strength of effects and biological basis. Int J Epidemiol 31:1235–1239

    Article  PubMed  CAS  Google Scholar 

  • Barlow DP, Stoger R, Herrmann BG, Saito K, Schweifer N (1991) The mouse insulin-like growth factor type-2 receptor is imprinted and closely linked to the Tme locus. Nature 349:84–87

    Article  PubMed  CAS  Google Scholar 

  • Barton S, Surani M, Norris M (1984) Role of paternal and maternal genomes in mouse development. Nature 311:374–376

    Article  PubMed  CAS  Google Scholar 

  • Bernal AJ, Jirtle RL (2010) Epigenomic disruption: the effects of early developmental exposures. Birth Defects Res A Clin Mol Teratol 88:938–944

    Article  PubMed  CAS  Google Scholar 

  • Calafat AM, Ye X, Wong LY, Reidy JA, Needham LL (2008) Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003–2004. Environ Health Perspect 116:39–44

    Article  PubMed  CAS  Google Scholar 

  • Callinan PA, Batzer MA (2006) Retrotransposable elements and human disease. Genome Dyn 1:104–115

    Article  PubMed  CAS  Google Scholar 

  • Calvanese V, Lara E, Kahn A, Fraga MF (2009) The role of epigenetics in aging and age-related diseases. Ageing Res Rev 8:268–276

    Article  PubMed  CAS  Google Scholar 

  • Carbone L, Harris RA, Vessere GM, Mootnick AR, Humphray S, Rogers J, Kim SK, Wall JD, Martin D, Jurka J, Milosavljevic A, de Jong PJ (2009) Evolutionary breakpoints in the gibbon suggest association between cytosine methylation and karyotype evolution. PLoS Genet 5:e1000538

    Article  PubMed  Google Scholar 

  • Caspi A, Sugden K, Moffitt TE, Taylor A, Craig IW, Harrington H, McClay J, Mill J, Martin J, Braithwaite A, Poulton R (2003) Influence of life stress on depression: moderation by a polymorphism in the 5-HTT gene. Science 301:386–389

    Article  PubMed  CAS  Google Scholar 

  • Cirio MC, Ratnam S, Ding F, Reinhart B, Navara C, Chaillet JR (2008) Preimplantation expression of the somatic form of Dnmt1 suggests a role in the inheritance of genomic imprints. BMC Dev Biol 8:9

    Article  PubMed  Google Scholar 

  • Cohen CJ, Lock WM, Mager DL (2009) Endogenous retroviral LTRs as promoters for human genes: a critical assessment. Gene 448:105–114

    Article  PubMed  CAS  Google Scholar 

  • Cooney CA, Dave AA, Wolff GL (2002) Maternal methyl supplements in mice affect epigenetic variation and DNA methylation of offspring. J Nutr 132:2393–2400

    Google Scholar 

  • Cordaux R, Batzer MA (2009) The impact of retrotransposons on human genome evolution. Nat Rev Genet 10:691–703

    Article  PubMed  CAS  Google Scholar 

  • Creamer B, Shorter RG, Bamforth J (1961) The turnover and shedding of epithelial cells. I. The turnover in the gastro-intestinal tract. Gut 2:110–118

    Article  PubMed  CAS  Google Scholar 

  • DeChiara TM, Robertson EJ, Efstratiadis A (1991) Parental imprinting of the mouse insulin-like growth factor ii gene. Cell 64:849–859

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Jirtle RL (2008) Environmental epigenomics in human health and disease. Environ Mol Mutagen 49:4–8

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Weidman JR, Waterland RA, Jirtle RL (2006) Maternal genistein alters coat color and protects Avy mouse offspring from obesity by modifying the fetal epigenome. Environ Health Perspect 114:567–572

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Huang D, Jirtle RL (2007) Maternal nutrient supplementation counteracts bisphenol A-induced DNA hypomethylation in early development. Proc Natl Acad Sci USA 104:13056–13061

    Article  PubMed  CAS  Google Scholar 

  • Dolinoy DC, Weinhouse C, Jones TR, Rozek LS, Jirtle RL (2010) Variable histone modifications at the A (vy) metastable epiallele. Epigenetics 5:637–644

    Article  PubMed  CAS  Google Scholar 

  • Druker R (2004) Complex patterns of transcription at the insertion site of a retrotransposon in the mouse. Nucleic Acids Res 32:5800–5808

    Article  PubMed  CAS  Google Scholar 

  • Feinberg AP (2007) Phenotypic plasticity and the epigenetics of human disease. Nature 447:433–440

    Article  PubMed  CAS  Google Scholar 

  • Ferguson-Smith AC (2011) Genomic imprinting: the emergence of an epigenetic paradigm. Nat Rev Genet 12:565–575

    Article  PubMed  CAS  Google Scholar 

  • Franklin TB, Russig H, Weiss IC, Graff J, Linder N, Michalon A, Vizi S, Mansuy IM (2010) Epigenetic transmission of the impact of early stress across generations. Biol Psychiatry 68:408–415

    Article  PubMed  Google Scholar 

  • Gaucher J, Reynoird N, Montellier E, Boussouar F, Rousseaux S, Khochbin S (2010) From meiosis to postmeiotic events: the secrets of histone disappearance. FEBS J 277:599–604

    Article  PubMed  CAS  Google Scholar 

  • Gavery MR, Roberts SB (2010) DNA methylation patterns provide insight into epigenetic regulation in the Pacific oyster (Crassostrea gigas). BMC Genomics 11:483

    Article  PubMed  Google Scholar 

  • Gluckman PD, Lillycrop KA, Vickers MH, Pleasants AB, Phillips ES, Beedle AS, Burdge GC, Hanson MA (2007) Metabolic plasticity during mammalian development is directionally dependent on early nutritional status. Proc Natl Acad Sci USA 104:12796–12800

    Article  PubMed  CAS  Google Scholar 

  • Gould SJ (2002) The structure of evolutionary theory. Belknap Press of Harvard University Press, Cambridge, MA

    Google Scholar 

  • Guerrero-Bosagna C, Settles M, Lucker B, Skinner MK (2010) Epigenetic transgenerational actions of vinclozolin on promoter regions of the sperm epigenome. PLoS One 5:e13100

    Article  PubMed  Google Scholar 

  • Haig D, Graham C (1991) Genomic imprinting and the strange case of the insulin-like growth factor II receptor. Cell 64:1045–1046

    Article  PubMed  CAS  Google Scholar 

  • Hajkova P, Erhardt S, Lane N, Haaf T, El-Maarri O, Reik W, Walter J, Surani MA (2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117:15–23

    Article  PubMed  CAS  Google Scholar 

  • Hanel ML, Wevrick R (2001) Establishment and maintenance of DNA methylation patterns in mouse Ndn: implications for maintenance of imprinting in target genes of the imprinting center. Mol Cell Biol 21:2384–2392

    Article  PubMed  CAS  Google Scholar 

  • Hansen KH, Bracken AP, Pasini D, Dietrich N, Gehani SS, Monrad A, Rappsilber J, Lerdrup M, Helin K (2008) A model for transmission of the H3K27me3 epigenetic mark. Nat Cell Biol 10:1291–1300

    Article  PubMed  CAS  Google Scholar 

  • Heijmans BT, Tobi EW, Stein AD, Putter H, Blauw GJ, Susser ES, Slagboom PE, Lumey LH (2008) Persistent epigenetic differences associated with prenatal exposure to famine in humans. Proc Natl Acad Sci USA 105:17046–17049

    Article  PubMed  CAS  Google Scholar 

  • Hemberger M, Dean W, Reik W (2009) Epigenetic dynamics of stem cells and cell lineage commitment: digging Waddington’s canal. Nat Rev Mol Cell Biol 10:526–537

    Article  PubMed  CAS  Google Scholar 

  • Ho SM, Tang WY, Belmonte de Frausto J, Prins GS (2006) Developmental exposure to estradiol and bisphenol A increases susceptibility to prostate carcinogenesis and epigenetically regulates phosphodiesterase type 4 variant 4. Cancer Res 66:5624–5632

    Article  PubMed  CAS  Google Scholar 

  • Hollingsworth JW, Maruoka S, Boon K, Garantziotis S, Li Z, Tomfohr J, Bailey N, Potts EN, Whitehead G, Brass DM, Schwartz DA (2008) In utero supplementation with methyl donors enhances allergic airway disease in mice. J Clin Invest 118:3462–3469

    PubMed  CAS  Google Scholar 

  • Jablonka E, Lamb MJ (2002) The changing concept of epigenetics. Ann N Y Acad Sci 981:82–96

    Article  PubMed  Google Scholar 

  • Jablonka E, Raz G (2009) Transgenerational epigenetic inheritance: prevalence, mechanisms, and implications for the study of heredity and evolution. Q Rev Biol 84:131–176

    Article  PubMed  Google Scholar 

  • Kaati G, Bygren LO, Pembrey M, Sjöström M (2007) Transgenerational response to nutrition, early life circumstances and longevity. Eur J Hum Genet 15:784–790

    Article  PubMed  CAS  Google Scholar 

  • Kalscheuer VM, Mariman EC, Schepens MT, Rehder H, Ropers HH (1993) The insulin-like growth factor type-2 receptor gene is imprinted in the mouse but not in humans. Nat Genet 5:74–78

    Article  PubMed  CAS  Google Scholar 

  • Kamakura M (2011) Royalactin induces queen differentiation in honeybees. Nature 473(7348):478–483

    Article  PubMed  CAS  Google Scholar 

  • Kaminen-Ahola N, Ahola A, Maga M, Mallitt K-A, Fahey P, Cox T, Whitelaw E, Chong S (2010) Maternal Ethanol Consumption Alters the Epigenotype and the Phenotype of Offspring in a Mouse Model. PLoS Genet 6:e1000811

    Article  PubMed  Google Scholar 

  • Kaneda M, Okano M, Hata K, Sado T, Tsujimoto N, Li E, Sasaki H (2004) Essential role for de novo DNA methyltransferase Dnmt3a in paternal and maternal imprinting. Nature 429:900–903

    Article  PubMed  CAS  Google Scholar 

  • Keller S, Sarchiapone M, Zarrilli F, Videtic A, Ferraro A, Carli V, Sacchetti S, Lembo F, Angiolillo A, Jovanovic N, Pisanti F, Tomaiuolo R, Monticelli A, Balazic J, Roy A, Marusic A, Cocozza S, Fusco A, Bruni CB, Castaldo G, Chiariotti L (2010) Increased BDNF promoter methylation in the Wernicke area of suicide subjects. Arch Gen Psychiatry 67:258–267

    Article  PubMed  CAS  Google Scholar 

  • Killian J, Byrd J, Jirtle J, Munday B, Stoskopf M, MacDonald R, Jirtle R (2000) M6P/IGF2R imprinting evolution in mammals. Mol Cell 5:707–716

    Article  PubMed  CAS  Google Scholar 

  • Kim JD, Faulk C, Kim J (2007) Retroposition and evolution of the DNA-binding motifs of YY1, YY2 and REX1. Nucleic Acids Res 35:3442–3452

    Article  PubMed  CAS  Google Scholar 

  • Kim JD, Kim H, Ekram MB, Yu S, Faulk C, Kim J (2011) Rex1/Zfp42 as an epigenetic regulator for genomic imprinting. Hum Mol Genet 20:1353–1362

    Article  PubMed  CAS  Google Scholar 

  • Kota SK, Feil R (2010) Epigenetic transitions in germ cell development and meiosis. Dev Cell 19:675–686

    Article  PubMed  CAS  Google Scholar 

  • Kronforst MR, Gilley DC, Strassmann JE, Queller DC (2008) DNA methylation is widespread across social hymenoptera. Curr biol CB 18:R287–R288

    Article  CAS  Google Scholar 

  • Kucharski R, Maleszka J, Foret S, Maleszka R (2008) Nutritional control of reproductive status in honeybees via DNA methylation. Science 319:1827–1830

    Article  PubMed  CAS  Google Scholar 

  • Lamarck J-B (1809) Philosophie Zoologique ou exposition des considérations relatives à l’histoire naturelle des animaux. Dentu et L’Auteur, Paris

    Google Scholar 

  • Lees-Murdock DJ, Walsh CP (2008) DNA methylation reprogramming in the germ line. Epigenetics 3:5–13

    Article  PubMed  Google Scholar 

  • Luedi P, Hartemink A, Jirtle R (2005) Genome-wide prediction of imprinted murine genes. Genome Res 15:875–884

    Article  PubMed  CAS  Google Scholar 

  • Luedi PP, Dietrich FS, Weidman JR, Bosko JM, Jirtle RL, Hartemink AJ (2007) Computational and experimental identification of novel human imprinted genes. Genome Res 17:1723–1730

    Article  PubMed  CAS  Google Scholar 

  • Maeno K, Tanaka S (2010) Epigenetic transmission of phase in the desert locust, Schistocerca gregaria: determining the stage sensitive to crowding for the maternal determination of progeny characteristics. J Insect Physiol 56:1883–1888

    Article  PubMed  CAS  Google Scholar 

  • McGowan PO, Sasaki A, D’Alessio AC, Dymov S, Labonté B, Szyf M, Turecki G, Meaney MJ (2009) Epigenetic regulation of the glucocorticoid receptor in human brain associates with childhood abuse. Nat Neurosci 12:342–348

    Article  PubMed  CAS  Google Scholar 

  • McGowan PO, Suderman M, Sasaki A, Huang TCT, Hallett M, Meaney MJ, Szyf M (2011) Broad epigenetic signature of maternal care in the brain of adult rats. PLoS One 6:e14739

    Article  PubMed  CAS  Google Scholar 

  • McKay JA, Waltham KJ, Williams EA, Mathers JC (2010) Folate depletion during pregnancy and lactation reduces genomic DNA methylation in murine adult offspring. Genes Nutr 6(2):189–196

    Article  PubMed  Google Scholar 

  • Morison IM, Ramsay JP, Spencer HG (2005) A census of mammalian imprinting. Trends Genet 21:457–465

    Article  PubMed  CAS  Google Scholar 

  • Murgatroyd C, Patchev AV, Wu Y, Micale V, Bockmuhl Y, Fischer D, Holsboer F, Wotjak CT, Almeida OF, Spengler D (2009) Dynamic DNA methylation programs persistent adverse effects of early-life stress. Nat Neurosci 12:1559–1566

    Article  PubMed  CAS  Google Scholar 

  • Murgatroyd C, Wu Y, Bockmühl Y, Spengler D (2010) The Janus face of DNA methylation in aging. Aging 2:107–110

    PubMed  CAS  Google Scholar 

  • Murphy SK, Jirtle RL (2003) Imprinting evolution and the price of silence. Bioessays 25:577–588

    Article  PubMed  CAS  Google Scholar 

  • News of Science (1957) Science 126:157–161

    Article  Google Scholar 

  • Nilsson EE, Anway MD, Stanfield J, Skinner MK (2008) Transgenerational epigenetic effects of the endocrine disruptor vinclozolin on pregnancies and female adult onset disease. Reproduction 135:713–721

    Article  PubMed  CAS  Google Scholar 

  • Nonchev S, Tsanev R (1990) Protamine-histone replacement and DNA replication in the male mouse pronucleus. Mol Reprod Dev 25:72–76

    Article  PubMed  CAS  Google Scholar 

  • Oates NA, van Vliet J, Duffy DL, Kroes HY, Martin NG, Boomsma DI, Campbell M, Coulthard MG, Whitelaw E, Chong S (2006) Increased DNA methylation at the AXIN1 gene in a monozygotic twin from a pair discordant for a caudal duplication anomaly. Am J Hum Genet 79:155–162

    Article  PubMed  CAS  Google Scholar 

  • Padmanabhan V, Siefert K, Ransom S, Johnson T, Pinkerton J, Anderson L, Tao L, Kannan K (2008) Maternal bisphenol-A levels at delivery: a looming problem? J Perinatol 28:258–263

    Article  PubMed  CAS  Google Scholar 

  • Qin C, Wang Z, Shang J, Bekkari K, Liu R, Pacchione S, McNulty KA, Ng A, Barnum JE, Storer RD (2010) Intracisternal A particle genes: distribution in the mouse genome, active subtypes, and potential roles as species-specific mediators of susceptibility to cancer. Mol Carcinog 49:54–67

    Article  PubMed  CAS  Google Scholar 

  • Rakyan VK, Blewitt ME, Druker R, Preis JI, Whitelaw E (2002) Metastable epialleles in mammals. Trends Genet 18:348–351

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Walter J (2001) Genomic imprinting: parental influence on the genome. Nat Rev Genet 2:21–32

    Article  PubMed  CAS  Google Scholar 

  • Reik W, Dean W, Walter J (2001) Epigenetic reprogramming in mammalian development. Science 293:1089–1093

    Article  PubMed  CAS  Google Scholar 

  • Roth TL, Zoladz PR, Sweatt JD, Diamond DM (2011) Epigenetic modification of hippocampal Bdnf DNA in adult rats in an animal model of post-traumatic stress disorder. J Psychiatr Res 45(7):919–926

    Article  PubMed  Google Scholar 

  • Santos F, Hendrich B, Reik W, Dean W (2002) Dynamic reprogramming of DNA methylation in the early mouse embryo. Dev Biol 241:172–182

    Article  PubMed  CAS  Google Scholar 

  • Sasaki H, Matsui Y (2008) Epigenetic events in mammalian germ-cell development: reprogramming and beyond. Nat Rev Genet 9:129–140

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Satoh N (2007) Effects of 5-aza-2′-deoxycytidine on the gene expression profile during embryogenesis of the Ascidian Ciona intestinalis: a microarray analysis. Zoolog Sci 24:648–655

    Article  PubMed  CAS  Google Scholar 

  • Soyfer VN (2001) The consequences of political dictatorship for Russian science. Nat Rev Genet 2:723–729

    Article  PubMed  CAS  Google Scholar 

  • Surani MA, Barton SC, Norris ML (1984) Development of reconstituted mouse eggs suggests imprinting of the genome during gametogenesis. Nature 308:548–550

    Article  PubMed  CAS  Google Scholar 

  • Vandegehuchte MB, Lemière F, Vanhaecke L, Vanden Berghe W, Janssen CR (2010) Direct and transgenerational impact on Daphnia magna of chemicals with a known effect on DNA methylation. Comp Biochem Physiol C Toxicol Pharmacol 151:278–285

    Article  PubMed  Google Scholar 

  • Vasicek TJ, Zeng L, Guan XJ, Zhang T, Costantini F, Tilghman SM (1997) Two dominant mutations in the mouse fused gene are the result of transposon insertions. Genetics 147:777–786

    PubMed  CAS  Google Scholar 

  • Walsh TK, Brisson JA, Robertson HM, Gordon K, Jaubert-Possamai S, Tagu D, Edwards OR (2010) A functional DNA methylation system in the pea aphid, Acyrthosiphon pisum. Insect Mol Biol 19(Suppl 2):215–228

    Article  PubMed  CAS  Google Scholar 

  • Waterland R, Jirtle R (2003) Transposable elements: targets for early nutritional effects on epigenetic gene regulation. Mol Cell Biol 23:5293–5300

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA, Dolinoy DC, Lin JR, Smith CA, Shi X, Tahiliani KG (2006a) Maternal methyl supplements increase offspring DNA methylation at Axin fused. Genesis 44:401–406

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA, Lin J-R, Smith CA, Jirtle RL (2006b) Post-weaning diet affects genomic imprinting at the insulin-like growth factor 2 (Igf2) locus. Hum Mol Genet 15:705–716

    Article  PubMed  CAS  Google Scholar 

  • Waterland RA, Kellermayer R, Laritsky E, Rayco-Solon P, Harris RA, Travisano M, Zhang W, Torskaya MS, Zhang J, Shen L, Manary MJ, Prentice AM (2010) Season of conception in rural gambia affects DNA methylation at putative human metastable epialleles. PLoS Genet 6:e1001252

    Article  PubMed  CAS  Google Scholar 

  • Weidman JR, Murphy SK, Nolan CM, Dietrich FS, Jirtle RL (2004) Phylogenetic footprint analysis of IGF2 in extant mammals. Genome Res 14:1726–1732

    Article  PubMed  CAS  Google Scholar 

  • Weinhouse C, Anderson OS, Jones TR, Kim J, Liberman SA, Nahar MS, Rozek LS, Jirtle RL, Dolinoy DC (2011) An expression microarray approach for the identification of metastable epialleles in the mouse genome. Epigenetics 6:1105–1113

    Article  PubMed  CAS  Google Scholar 

  • Weismann A (1891) Essays upon heredity. Clarendon, Oxford

    Google Scholar 

  • Weisser WW, Braendle C, Minoretti N (1999) Predator-induced morphological shift in the pea aphid. Proc R Soc Lond B Biol Sci 266:1175–1181

    Article  Google Scholar 

  • Wilkins JF, Haig D (2003) What good is genomic imprinting: the function of parent-specific gene expression. Nat Rev Genet 4:359–368

    Article  PubMed  CAS  Google Scholar 

  • Wu SC, Zhang Y (2010) Active DNA demethylation: many roads lead to Rome. Nat Rev Mol Cell Biol 11:607–620

    Article  PubMed  CAS  Google Scholar 

  • Wu J, Basha MR, Brock B, Cox DP, Cardozo-Pelaez F, McPherson CA, Harry J, Rice DC, Maloney B, Chen D, Lahiri DK, Zawia NH (2008) Alzheimer’s disease (AD)-like pathology in aged monkeys after infantile exposure to environmental metal lead (Pb): evidence for a developmental origin and environmental link for AD. J Neurosci 28:3–9

    Article  PubMed  CAS  Google Scholar 

  • Yamazaki Y, Mann MRW, Lee SS, Marh J, McCarrey JR, Yanagimachi R, Bartolomei MS (2003) Reprogramming of primordial germ cells begins before migration into the genital ridge, making these cells inadequate donors for reproductive cloning. Proc Natl Acad Sci USA 100:12207–12212

    Article  PubMed  CAS  Google Scholar 

  • Yaoi T, Itoh K, Nakamura K, Ogi H, Fujiwara Y, Fushiki S (2008) Genome-wide analysis of epigenomic alterations in fetal mouse forebrain after exposure to low doses of bisphenol A. Biochem Biophys Res Commun 376:563–567

    Article  PubMed  CAS  Google Scholar 

  • Youngson NA, Whitelaw E (2008) Transgenerational epigenetic effects. Annu Rev Genomics Hum Genet 9:233–257

    Article  PubMed  CAS  Google Scholar 

  • Zemach A, Zilberman D (2010) Evolution of eukaryotic DNA methylation and the pursuit of safer sex. Curr Biol 20:R780–R785

    Article  PubMed  CAS  Google Scholar 

  • Zeng X, Chen S, Huang H (2011) Phosphorylation of EZH2 by CDK1 and CDK2: a possible regulatory mechanism of transmission of the H3K27me3 epigenetic mark through cell divisions. Cell Cycle 10:579–583

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

Research support was provided by NIH grants T32 ES007062 (CF), R01 ES017524 (DCD), and the University of Michigan NIEHS P30 Core Center ES017885 as well as NIH/EPA P20 grant ES018171/RD 83480001. The authors have no conflicts of interest and declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dana C. Dolinoy .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Faulk, C., Dolinoy, D.C. (2013). Complex Phenotypes: Epigenetic Manifestation of Environmental Exposures. In: Jirtle, R., Tyson, F. (eds) Environmental Epigenomics in Health and Disease. Epigenetics and Human Health. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23380-7_4

Download citation

Publish with us

Policies and ethics