Skip to main content

Force Sensing and Control in Robot-Assisted Suspended Cell Injection System

  • Chapter
Advances in Robotics and Virtual Reality

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 26))

Abstract

Stimulated by state-of-the-art robotic and computer technology, cell injection automation aims to scale and seamlessly transfer the human hand movements into more precise and fast movements of the micromanipulator. This chapter presents a robotic cell-injection system for automatic injection of batch-suspended cells. To facilitate the process, these suspended cells are held and fixed to a cell array by a specially designed cell holding device, and injected one by one through an “out-ofplane” cell injection process. Starting from image identifying the embryos and injector pipette, a proper batch cell injection process, including the injection trajectory of the pipette, is designed for this automatic suspended cell injection system. A micropipette equipped with a PVDF micro force sensor to measure real time injection force, is integrated in the proposed system. Through calibration, an empirical relationship between the cell injection force and the desired injector pipette trajectory is obtained in advance. Then, after decoupling the out-of-plane cell injection into a position control in XY horizontal plane and an impedance control in the Z- axis, a position and force control algorithm is developed for controlling the injection pipette. The depth motion of the injector pipette, which cannot be observed by microscope, is indirectly controlled via the impedance control, and the desired force is determined from the online XY position control and the cell calibration results. Finally, experimental results demonstrate the effectiveness of the proposed approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Accessed (2011), http://www.test.org/doe

  2. Accessed (2011), http://www.eppendorf.com

  3. Accessed (2011), http://www.dynacitytech.com

  4. Ammi, M., Ferreira, A.: Realistic visual and haptic rendering for biological-cell injection. In: Proceedings of the 2005 IEEE International Conference on Robotics and Automation, ICRA 2005, pp. 918–923 (2005)

    Google Scholar 

  5. Arai, F., Sugiyama, T., Fukuda, T., Iwata, H., Itoigawa, K.: Micro tri-axial force sensor for 3d bio-manipulation. In: Proceedings. 1999 IEEE International Conference on Robotics and Automation (1999)

    Google Scholar 

  6. Cho, S.Y., Shim, J.H.: A new micro biological cell injection system. In: Proceedings. 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2004 (2004)

    Google Scholar 

  7. Fujisato, T., Abe, S., Tsuji, T., Sada, M., Miyawaki, F., Ohba, K.: The development of an ova holding device made of microporous glass plate for genetic engineering. In: Proceedings of the 20th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (1998)

    Google Scholar 

  8. Huang, H., Sun, D., Mills, J., Cheng, S.H.: Integrated vision and force control in suspended cell injection system: Towards automatic batch biomanipulation. In: IEEE International Conference on Robotics and Automation, ICRA 2008, pp. 3413–3418 (2008)

    Google Scholar 

  9. Huang, H., Sun, D., Mills, J., Li, W., Cheng, S.H.: Visual-based impedance control of out-of-plane cell injection systems. IEEE Transactions on Automation Science and Engineering 6(3), 565–571 (2009)

    Article  Google Scholar 

  10. Huang, H.B., Sun, D., Mills, J.K., Cheng, S.H.: Robotic cell injection system with position and force control: toward automatic batch biomanipulation. Trans. Rob. 25, 727–737 (2009), http://dx.doi.org/10.1109/TRO.2009.2017109

    Article  Google Scholar 

  11. Kallio, P.: Capillary pressure microinjection of living adherent cells: challenges in automation. Journal of Micromechatronics 3(32), 189–220 (2006)

    Article  Google Scholar 

  12. Kawaji, A.: 3d calibration for micro-manipulation with precise position measurement. Journal of Micromechatronics 1(14), 117–130 (2001)

    Article  Google Scholar 

  13. Kim, D.H., Yun, S., Kim, B.: Mechanical force response of single living cells using a microrobotic system. In: Proceedings. 2004 IEEE International Conference on Robotics and Automation, ICRA (2004)

    Google Scholar 

  14. Kumar, R., Kapoor, A., Taylor, R.: Preliminary experiments in robot/human cooperative microinjection. In: Proceedings. 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2003, vol. 3&4, pp. 3186–3191 (2003)

    Google Scholar 

  15. Lai, K., Kwong, C., Li, W.: Kl probes for robotic-based cellular nano surgery. In: 2003 Third IEEE Conference on Nanotechnology, IEEE-NANO 2003, vol. 1&2, pp. 152–155 (2003)

    Google Scholar 

  16. Li, G., Xi, N.: Calibration of a micromanipulation system. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2002)

    Google Scholar 

  17. Li, X., Zong, G., Bi, S.: Development of global vision system for biological automatic micro-manipulation system. In: Proceedings. 2001 IEEE International Conference on Robotics and Automation, ICRA (2001)

    Google Scholar 

  18. Liu, X., Lu, Z., Sun, Y.: Orientation control of biological cells under inverted microscopy. IEEE/ASME Transactions on Mechatronics (99), 1–7 (2010), doi:10.1109/TMECH.2010.2056380

    Google Scholar 

  19. Liu, X., Sun, Y.: Microfabricated glass devices for rapid single cell immobilization in mouse zygote microinjection. Biomedical Microdevices 11(6), 1169–1174 (2009)

    Article  Google Scholar 

  20. Lu, Z., Chen, P.C.Y., Nam, J., Ge, R., Lin, W.: A micromanipulation system with dynamic force-feedback for automatic batch microinjection. Journal of Micromechanics and Microengineering 17(2), 314 (2007)

    Article  Google Scholar 

  21. Matsuoka, H., Komazaki, T., Mukai, Y., Shibusawa, M., Akane, H., Chaki, A., Uetake, N., Saito, M.: High throughput easy microinjection with a single-cell manipulation supporting robot. Journal of Biotechnology 116(2), 185–194 (2005)

    Article  Google Scholar 

  22. Mattos, L., Grant, E., Thresher, R.: Semi-automated blastocyst microinjection. In: Proceedings 2006 IEEE International Conference on Robotics and Automation, ICRA 2006, pp. 1780–1785 (2006)

    Google Scholar 

  23. Pillarisetti, A., Pekarev, M., Brooks, A., Desai, J.: Evaluating the effect of force feedback in cell injection. IEEE Transactions on Automation Science and Engineering 4(3), 322–331 (2007)

    Article  Google Scholar 

  24. Qu, W.T.: Chord midpoint hough transform based ellipse detection method. Journal of Zhejiang University (Engineering Science) 39(8), 1132–1135 (2005)

    Google Scholar 

  25. Sun, D., Liu, Y.: Modeling and impedance control of a two-manipulator system handling a flexible beam. In: Proceedings. 1997 IEEE International Conference on Robotics and Automation, vol. 2, pp. 1787–1792 (1997)

    Google Scholar 

  26. Sun, Y., Nelson, B.J.: Biological Cell Injection Using an Autonomous MicroRobotic System. The International Journal of Robotics Research 21(10-11), 861–868 (2002)

    Article  Google Scholar 

  27. Sun, Y., Wan, K.T., Roberts, K., Bischof, J., Nelson, B.: Mechanical property characterization of mouse zona pellucida. IEEE Transactions on NanoBioscience 2(4), 279–286 (2003)

    Article  Google Scholar 

  28. Tan, K.K., Ng, D.C., Xie, Y.: Optical intra-cytoplasmic sperm injection with a piezo micromanipulator. In: The 4th World Congress on Intelligent Control and Automation, 2002. Proceedings (2002)

    Google Scholar 

  29. Tan, Y., Sun, D., Huang, W., Cheng, S.H.: Mechanical modeling of biological cells in microinjection. IEEE Transactions on NanoBioscience 7(4), 257–266 (2008)

    Article  Google Scholar 

  30. Wang, W., Liu, X., Gelinas, D., Ciruna, B., Sun, Y.: A fully automated robotic system for microinjection of zebrafish embryos. PLoS ONE 2(9), e862 (2007)

    Article  Google Scholar 

  31. Xie, Y., Sun, D., Liu, C., Cheng, S.H.: An adaptive impedance force control approach for robotic cell microinjection. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS 2008, pp. 907–912 (2008)

    Google Scholar 

  32. Xie, Y., Sun, D., Liu, C., Cheng, S.H.: A flexible force-based cell injection approach in a bio-robotic system. In: Proceedings 2009 IEEE International Conference on Robotics and Automation (2009)

    Google Scholar 

  33. Xie, Y., Sun, D., Liu, C., Tse, H., Cheng, S.: A force control approach to a robot-assisted cell microinjection system. Int. J. Rob. Res. 29, 1222–1232 (2010), http://dx.doi.org/10.1177/0278364909354325

    Article  Google Scholar 

  34. Xudong, L.: Automatic micromanipulating system for biological applications with visual servo control. Journal of Micromechatronics 1(4), 345–363 (2002)

    Google Scholar 

  35. Sun, Y., Wejinya, U.C., Xi, N., Pomeroy, C.A.: Force measurement and mechanical characterization of living drosophila embryos for human medical study. Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 221, 99–112 (2006)

    Google Scholar 

  36. Yu, S., Nelson, B.: Microrobotic cell injection. In: Proceedings. 2001 IEEE International Conference on Robotics and Automation, ICRA (2001)

    Google Scholar 

  37. Zhang, X.J., Zappe, S., Bernstein, R.W., Sahin, O., Chen, C.C., Fish, M., Scott, M.P., Solgaard, O.: Micromachined silicon force sensor based on diffractive optical encoders for characterization of microinjection. Sensors and Actuators A: Physical 114(2-3), 197–203 (2004); Selected papers from Transducers 03

    Article  Google Scholar 

  38. Zhou, Y., Nelson, B.J., Vikramaditya, B.: Integrating optical force sensing with visual servoing for microassembly. J. Intell. Robotics Syst. 28, 259–276 (2000)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 IFIP

About this chapter

Cite this chapter

Huang, H., Sun, D., Su, H., Mills, J.K. (2012). Force Sensing and Control in Robot-Assisted Suspended Cell Injection System. In: Gulrez, T., Hassanien, A.E. (eds) Advances in Robotics and Virtual Reality. Intelligent Systems Reference Library, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23363-0_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23363-0_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23362-3

  • Online ISBN: 978-3-642-23363-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics