Skip to main content

Operating High-DoF Articulated Robots Using Virtual Links and Joints

  • Chapter
Advances in Robotics and Virtual Reality

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 26))

  • 1986 Accesses

Abstract

This chapter presents the theory, implementation, and application of a novel operations system for articulated robots with large numbers (10s to 100s) of degrees-of-freedom (DoF), based on virtual articulations and kinematic abstractions. Such robots are attractive in some applications, including space exploration, due to their application flexibility. But operating them can be challenging: they are capable of many different kinds of motion, but often this requires coordination of many joints. Prior methods exist for specifying motions at both low and high-levels of detail; the new methods fill a gap in the middle by allowing the operator to be as detailed as desired. The presentation is fully general and can be directly applied across a broad class of 3D articulated robots.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Baerlocher, P., Boulic, R.: An inverse kinematics architecture enforcing an arbitrary number of strict priority levels. Visual Computer 20, 402–417 (2004)

    Article  Google Scholar 

  2. Baerlocher, P.: Inverse Kinematics Techniques for the Interactive Posture Control of Articulated Figures. PhD thesis, EPFL (2001)

    Google Scholar 

  3. Bruyninckx, H.: Open RObot COntrol Software (OROCOS), http://www.orocos.org

  4. Bruyninckx, H.: Kinematic Models for Robot Compliant Motion with Identification of Uncertanties. PhD thesis, Katholieke Universiteit Leuven (1995)

    Google Scholar 

  5. Chiacchio, P., Chiaverini, S., Sciavicco, L., Siciliano, B.: Closed-loop inverse kinematics schemes for constrained redundant manipulators with task space augmentation and task priority strategy. IJRR 10(4), 410–425 (1991)

    Article  Google Scholar 

  6. Chirikjian, G., Burdick, J.: The kinematics of hyper-redundant robot locomotion. IEEE Trans. on Robotics and Automation 11(6), 781–793 (1995)

    Article  Google Scholar 

  7. Davis, E.: Approximation and abstraction in solid object kinematics. Technical Report TR1995-706, NYU Computer Science (1995)

    Google Scholar 

  8. Detweiler, C., Vona, M., Kotay, K., Rus, D.: Hierarchical control for self-assembling mobile trusses with passive and active links. In: IEEE International Conference on Robotics and Automation, pp. 1483–1490 (2006)

    Google Scholar 

  9. Detweiler, C., Vona, M., Yoon, Y., Yun, S., Rus, D.: Self-assembling mobile linkages. IEEE Robotics and Automation Magazine 14, 45–55 (2007)

    Article  Google Scholar 

  10. Diaz-Calderon, A., Nesnas, I.A.D., Nayar, H.D., Kim, W.S.: Towards a unified representation of mechanisms for robotic control software. International Journal of Advanced Robotic Systems 3(1), 061–066 (2006)

    Google Scholar 

  11. Dobrjanskyj, L., Freudenstein, F.: Some applications of graph theory to the structural analysis of mechanisms. ASME Journal of Engineering for Industry, 153–158 (1967)

    Google Scholar 

  12. Featherstone, R., Orin, D.: Robot dynamics: Equations and algorithms. In: IEEE ICRA, pp. 826–834 (2000)

    Google Scholar 

  13. Fitch, R., Butler, Z.: Million module march: Scalable locomotion for large self-reconfiguring robots. International Journal of Robotics Research 27(3/4), 331–343 (2008)

    Google Scholar 

  14. Flückiger, L.: A robot interface using virtual reality and automatic kinematics generator. In: Int. Symposium on Robotics, pp. 123–126 (April 1998)

    Google Scholar 

  15. Fukuda, T., Nakagawa, S.: Dynamically reconfigurable robotic system. In: IEEE ICRA, pp. 1581–1586 (1988)

    Google Scholar 

  16. Gleicher, M.L.: A Differential Approach to Graphical Interaction. PhD thesis, Carnegie Mellon University, School of Computer Science (1994)

    Google Scholar 

  17. Hauser, K., Bretl, T., Latombe, J.-C., Wilcox, B.: Motion planning for a six-legged lunar robot. In: WAFR, pp. 301–316 (2006)

    Google Scholar 

  18. Ivlev, O., Gräser, A.: An analytical method for the inverse kinematics of redundant robots. In: Proceedings of 3rd ECPD Int. Conf. on Advanced Robots, Intelligent Automation and Active Systems, pp. 416–421 (1997)

    Google Scholar 

  19. Ivlev, O., Gräser, A.: Resolving redundancy of series kinematic chains through imaginary links. In: Proceedings of CESA 1998 IMACS Multiconference, Computational Engineering in Systems Applications, pp. 477–482 (1998)

    Google Scholar 

  20. Kokkevis, E.: Practical physics for articulated characters. In: Game Developers Conference (2004)

    Google Scholar 

  21. Liégeois, A.: Automatic supervisory control of the configuration and behavior of multibody mechanisms. IEEE Transactions on Systems, Man, and Cybernetics, SMC 7(12), 868–871 (1977)

    Article  MATH  Google Scholar 

  22. Mittman, D., Norris, J., Powell, M., Torres, R., McQuin, C., Vona, M.: Lessons Learned from All-Terrain Hex-Limbed Extra-Terrestrial Explorer Robot Field Test Operations at Moses Lake Sand Dunes, Washington. In: AIAA Space (2008)

    Google Scholar 

  23. Moll, M., Rus, D.: Special issue on self-reconfiguring modular robots. International Journal of Robotics Research 27(3/4) (March/April 2008)

    Google Scholar 

  24. Nakaoka, S., Nakazawa, A., Yokoi, K., Hirukawa, H., Ikeuchi, K.: Generating whole body motions for a biped humanoid robot from captured human dances. In: IEEE ICRA, pp. 3905–3910 (2003)

    Google Scholar 

  25. Phillips, C.B., Zhao, J., Badler, N.I.: Interactive real-time articulated figure manipulation using multiple kinematic constraints. In: Proceedings of SIGGRAPH, pp. 245–250 (1990)

    Google Scholar 

  26. Pratt, J., Chew, C., Torres, A., Dilworth, P., Pratt, G.: Virtual model control: An intuitive approach for bipedal locomotion. IJRR 20(2), 129–143 (2001)

    Article  Google Scholar 

  27. Pratt, J.E.: Virtual model control of a biped walking robot. Master’s thesis, Massachusetts Institute of Technology (1995)

    Google Scholar 

  28. Pryor, M.: Task-Based Resource Allocation for Improving the Reusability of Redundant Manipulators. PhD thesis, University of Texas at Austin (2002)

    Google Scholar 

  29. Pryor, M.W., Taylor, R.C., Kapoor, C., Tesar, D.: Generalized software components for reconfiguring hyper-redundant manipulators. IEEE/ASME Transactions on Mechatronics 7(4), 475–478 (2002)

    Article  Google Scholar 

  30. Rus, D., Butler, Z., Kotay, K., Vona, M.: Self-reconfiguring robots. Communications of the ACM 45(3), 39–45 (2002)

    Article  Google Scholar 

  31. Rus, D., Chirikjian, G.S.: Special issue on self-reconfiguable robots. Autonomous Robots 10(1) (January 2001)

    Google Scholar 

  32. Siciliano, B., Slotine, J.-J.E.: A general framework for managing multiple tasks in highly redundant robotic systems. In: Fifth International Conference on Advanced Robotics, pp. 1211–1216 (1991)

    Google Scholar 

  33. Smith, R.: Open dynamics engine (2008), http://www.ode.org

  34. Smith, T., Barreiro, J., Smith, D., SunSpiral, V., Chavez-Clemente, D.: ATHLETE’s Feet: Multi-Resolution Planning for a Hexapod Robot. In: ICAPS (2008)

    Google Scholar 

  35. Vassilvitskii, S., Kubica, J., Rieffel, E., Suh, J., Yim, M.: On the general reconfiguration problem for expanding cube style modular robots. In: IEEE ICRA, pp. 801–808 (2002)

    Google Scholar 

  36. Vona, M., Mittman, D., Norris, J., Rus, D.: Using virtual articulations to operate high-DoF manipulation and inspection motions. In: FSR (2009)

    Google Scholar 

  37. Vona, M.: Hierarchical decomposition and kinematic abstraction with virtual articulations. In: Advances in Robot Kinematics, pp. 33–43 (2010)

    Google Scholar 

  38. Vona, M.: MSim: Mixed Real/Virtual Simulator and Interface (2011), http://www.ccs.neu.edu/research/gpc/msim

  39. Vona, M.A.: Virtual Articulation and Kinematic Abstraction in Robotics. PhD thesis, EECS, Massachusetts Institute of Technology (August 2009)

    Google Scholar 

  40. Welman, C.: Inverse kinematics and geometric constraints for articulated figure manipulation. Master’s thesis, Simon Fraser University (1993)

    Google Scholar 

  41. Wilcox, B., Litwin, T., Biesiadecki, J., Matthews, J., Heverly, M., Morrison, J., Townsend, J., Ahmad, N., Sirota, A., Cooper, B.: ATHLETE: A cargo handling and manipulation robot for the moon. Field Robotics 24, 421–434 (2007)

    Article  Google Scholar 

  42. Williams, R., Mayhew, J.: Control of truss-based manipulators using virtual serial models. In: ASME DETC (1996)

    Google Scholar 

  43. Wood, G.D., Kennedy, D.C.: Simulating mechanical systems in simulink with SimMechanics. Technical report, The Mathworks (2003)

    Google Scholar 

  44. Zanganeh, K.E., Angeles, J.: A formalism for the analysis and design of modular kinematic structures. IJRR 17(7), 720–730 (1998)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 IFIP

About this chapter

Cite this chapter

Vona, M.A. (2012). Operating High-DoF Articulated Robots Using Virtual Links and Joints. In: Gulrez, T., Hassanien, A.E. (eds) Advances in Robotics and Virtual Reality. Intelligent Systems Reference Library, vol 26. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23363-0_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23363-0_12

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23362-3

  • Online ISBN: 978-3-642-23363-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics