Advertisement

Spatially Resolved Luminescence Spectroscopy

  • Gintautas TamulaitisEmail author
Chapter
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 150)

Abstract

Spatially resolved luminescence spectroscopy is a useful tool for the study of semiconductors with inhomogeneities of their properties on submicrometer scale and semiconductor nanostructures. In this chapter, basic operation principles, instrumentation, and advantages and disadvantages of micro-photoluminescence (μ-PL), confocal microscopy, scanning near-field optical microscopy (SNOM), and cathodoluminescence (CL) are discussed.

Keywords

Scanning Transmission Electron Microscope Nonequilibrium Carrier Single Quantum Well Excitation Power Density Photoexcited Carrier 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    T.R. Corle, G.S. Kino, Confocal Scanning Optical Mocroscopy and Related Imaging Systems, p. 39 (Academic, San Diego, 1996)Google Scholar
  2. 2.
    J.B. Pawley, Handbook of BiologicalConfocal Microscopy, 2nd edn. (Plenum, New York, 1995)Google Scholar
  3. 3.
    D.B. Murphy, Fundamentals of Light Microscopy and Electronic Imaging (Wiley, New York, 2001)Google Scholar
  4. 4.
    R. Pike, D. Chana, P. Neocleous, Sh. Jiang, in Optical Imaging and Microscopy, ed. by P. Török, F.-J Kao (Springer, Heidelberg, 2007)Google Scholar
  5. 5.
    P.L. Lu, in Handbook of Microscopy for Nanotechnology, ed. by N. Yao, Z.L. Wang (Kluwer, Boston, 2005)Google Scholar
  6. 6.
    S. Hell, E.H.K. Stelzer, J. Opt. Soc. Am. A, 9, 2159 (1992)Google Scholar
  7. 7.
    K. Okamoto, A. Kaneta, Y. Kawakami, S. Fujita, J. Choi, M. Terazima, T. Mukai, J. Appl. Phys. 98, 064503 (2005)Google Scholar
  8. 8.
    D. Dobrovolskas, J. Mickevičius, E. Kuokštis, G. Tamulaitis, M. Shur, M. Shatalov, J. Yang, R. Gaska, J. Phys. D: Appl. Phys. 44 135104 (2011)Google Scholar
  9. 9.
    E.H. Synge, Philos. Mag. 6, 356 (1928)Google Scholar
  10. 10.
    E.H. Synge, Philos. Mag. 13, 297 (1932)Google Scholar
  11. 11.
    E.A. Ash, G. Nicholls, Nature 237, 510 (1972)Google Scholar
  12. 12.
    H.A. Bethe, Phys. Rev. 66, 163 (1944)Google Scholar
  13. 13.
    C.J. Bouwkamp, Philips Res. Rep. 5, 321 (1950)Google Scholar
  14. 14.
    C.J. Bouwkamp, Philips Res. Rep. 5, 401 (1950)Google Scholar
  15. 15.
    L. Novotny, D.W. Pohl, in O. Marti, R. Möler (eds), Photons and Local Probes (Kluwer, The Netherlands, 1996)Google Scholar
  16. 16.
    E. Betzig, J.K. Trautmann, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991)Google Scholar
  17. 17.
    B. Knoll, F. Keilmann, A. Kramer, R. Guckenberger, Appl. Phys. Lett. 70, 2667 (1997)Google Scholar
  18. 18.
    L. Novotny, D.W. Pohl, P. Regli, J. Opt. Soc. Am. A 11, 1768 (1994)Google Scholar
  19. 19.
    D.W. Pohl, in Advances in Optical and Electron Microscopy, ed. by C.J.R. Sheppard, T. Mulvey (Academic, London, 1990)Google Scholar
  20. 20.
    G.A. Valaskovic, M. Holton, G.H. Morrison, Appl. Opt. 34, 1215 (1995)Google Scholar
  21. 21.
    T. Saisaki, K. Matsuda, Appl. Phys. Lett. 74, 2773 (1999)Google Scholar
  22. 22.
    T. Matsumoto, M. Ohtsu, J. Lightwave Technol. 14, 2224 (1996)Google Scholar
  23. 23.
    N.F. van Hulst, M.H.P. Moers, O.F.J. Noordman, R.G. Tack, F.B. Segerink, B. Bölger, Appl. Phys. Lett. 62, 461 (1993)Google Scholar
  24. 24.
    D.-M. Yeh, C.-F. Huang, C.-Y. Chen, Y.-C. Lu, C.C. Yang, Appl. Phys. Lett. 91, 171103 (2007)Google Scholar
  25. 25.
    C.-F. Lu, C.-H. Liao, C.-Y. Chen, C. Hsieh, Y.-W. Kiang, C.C. Yang, Appl. Phys. Lett. 96, 261104 (2010)Google Scholar
  26. 26.
    A. Klar, M. Perner, S. Grosse, G. von Plessen, W. Spirkl, J. Feldmann, Phys. Rev. Lett. 80, 4249 (1998)Google Scholar
  27. 27.
    S.A. Maier, H.A. Atwater, Appl. Phys. Lett. 98, 011101 (2005)Google Scholar
  28. 28.
    E. Ozbay, Science 311, 189 (2006)Google Scholar
  29. 29.
    L. Novotny, S.J. Stranick, Annu. Rev. Phys. Chem. 57, 303 (2006)Google Scholar
  30. 30.
    R.D. Grober, T.D. Harris, J.K. Trautman, E. Betzig, Rev. Sci. Instrum. 65, 626 (1994)Google Scholar
  31. 31.
    E. Betzig, J.K. Trautman, T.D. Harris, J.S. Weiner, R.L. Kostelak, Science 251, 1468 (1991)Google Scholar
  32. 32.
    A. Kaneta, M. Funato, Y. Kawakami, Phys. Rev. B 78, 125317 (2008)Google Scholar
  33. 33.
    A. Kaneta, T. Hashimoto, K. Nishimura, M. Funato, Y. Kawakami, Appl. Phys. Express 3, 102102 (2010)Google Scholar
  34. 34.
    A. Kaneta, K. Okamoto, Y. Kawakami, Sh. Fujita, G. Marutsuki, Y. Narukawa, T. Mukai, Appl. Phys. Lett. 81, 4353 (2002)Google Scholar
  35. 35.
    K. Okamoto, K. Inoue, Y. Kawakami, Sh. Fujita, M. Terazima, A. Tsujimura, I. Kidoguchi, Rev. Sci. Instrum. 74, 575 (2003)Google Scholar
  36. 36.
    K. Okamoto, A. Scherer, Y. Kawakami, Appl. Phys. Lett. 87, 161104 (2005)Google Scholar
  37. 37.
    R.D. Grober, T.D. Harris, J.K. Trautman, E. Betzig, Rev. Sci. Instrum. 65, 626 (1994)Google Scholar
  38. 38.
    G. Behme, A. Richter, M. Süptitz, Ch. Lienau, Rev. Sci. Instrum. 68, 3458 (1997)Google Scholar
  39. 39.
    V. Liuolia, A. Pinos, S. Marcinkeviius, Y.D. Lin, H. Ohta, S.P. DenBaars, S. Nakamura, Appl. Phys. Lett. 97, 151106 (2010)Google Scholar
  40. 40.
    A. Hangleiter, F. Hitzel, C. Netzel, D. Fuhrman, U. Rossow, G. Ade, P. Hinze, Phys. Rev. Lett. 95, 127402 (2005)Google Scholar
  41. 41.
    B.G. Yacobi, D.B. Holt, Cathodoluminescence Microscopy of Inorganic Solids (Plenum, New York, 1990)Google Scholar
  42. 42.
    S. Chichibu, K. Wada, S. Nakamura, Appl. Phys. Lett., 71, 2346 (1997)Google Scholar
  43. 43.
    V. Pérez-Solórzano, A. Gröning, M. Jetter, T. Riemann, J. Christen, Appl. Phys. Lett. 87, 163121 (2005)Google Scholar
  44. 44.
    A. Steckenborn, H. Munzel, D. Bimberg, J. Lumin. 24–25, 351 (1981)Google Scholar
  45. 45.
    M. Fischer, S. Srinivasan, F.A. Ponce, B. Monemar, F. Bertram, J. Christen, Appl. Phys. Lett. 93, 151901 (2008)Google Scholar
  46. 46.
    M. Merano, S. Sonderegger, A. Crottini, S. Collin, P. Renucci, E. Pelucchi, A. Malko, M. H. Baier, E. Kapon, B. Deveaud, J.-D. Ganie‘re, Nature, 438, 479 (2005)Google Scholar
  47. 47.
    M. Merano, S. Sonderegger, A. Crottini, S. Collin, E. Pelucchi, P. Renucci, A. Malko, M.H. Baier, E. Kapon, J.D. Gganière, B. Deveaud, Appl. Phys. B 84, 343 (2006)Google Scholar
  48. 48.
    F. Urbach, Phys. Rev. 92, 1324 (1953)Google Scholar
  49. 49.
    J. Nunnenkamp, J.H. Collet, J. Klebiczki, J. Kuhl, K. Ploog, Phys. Rev. B, 43, 14047 (1991)Google Scholar
  50. 50.
    J. Mickevičius, M.S. Shur, R.S. Qhalid Fareed, J.P. Zhang, R. Gaska, G. Tamulaitis, Appl. Phys. Lett. 87, 241918 (2005)Google Scholar
  51. 51.
    A. Gustafsson, M.-E. Pistol, L. Montelius, L. Samuelson, J. Appl. Phys. 84, 1715 (1998)Google Scholar
  52. 52.
    K.H. Gulden, H.Lin, P. Kiesel, P. Riel, G.H. Dohler, K.J. Eberling, Phys. Rev. Lett. 66, 373 (1991)Google Scholar
  53. 53.
    A.E. Bulatov, S.G. Tikhodeev, Phys. Rev. B, 46, 15058 (1992)Google Scholar
  54. 54.
    F.G. Monte, S.W. Da Silva, J.M.R. Cruz, P.M. Morais, A.S. Chaves, Phys. Rev. B, 62, 6924 (2000)Google Scholar
  55. 55.
    W.F. Brinkman, T.M. Rice, Phys. Rev. B 7, 1508 (1973)Google Scholar
  56. 56.
    A. Cornet, M. Pugnet, J. Collet, T. Amand, M. Brousseau, J. Phys. Colloques 42 C7–471(1981)Google Scholar
  57. 57.
    R. Heintzmann, M.G.L. Gustafsson, Nat. Photonics 3, 362 (2009)Google Scholar
  58. 58.
    K.A. Lidke, B. Riegel, T.M. Jovin, R. Heintzmann, Opt. Express 13, 7052 (2005)Google Scholar
  59. 59.
    W.E. Moerner, Nat. Methods 3, 781 (2006)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Semiconductor Physics Department and Institute of Applied PhysicsVilnius UniversityVilniusLithuania

Personalised recommendations