Photoluminescence: A Tool for Investigating Optical, Electronic, and Structural Properties of Semiconductors

  • G. Pettinari
  • A. Polimeni
  • M. CapizziEmail author
Part of the Springer Series in Materials Science book series (SSMATERIALS, volume 150)


Theoretical basis and typical experimental setups of photoluminescence, PL, are briefly described. The investigation by PL of some of the fundamental properties of compound semiconductors and alloys—e.g., optical gap, type and density of shallow impurities, effects of structural disorder in alloys and at heterostructure interfaces, and carrier effective masses—is illustrated. The effects on PL spectra of magnetic fields are discussed, together with the validity limits of perturbation and numerical models for different ratios of magnetic and excitonic energies.


Landau Level Exciton Binding Energy Free Exciton Electron Effective Mass Degenerate Semiconductor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We would like to acknowledge many colleagues with whom we collaborated on the topics presented in this chapter. First of all, we are grateful to F. Martelli and A. Patanè for their valuable contribution to the studies presented in the first section of this chapter. We gratefully acknowledge the fruitful collaboration with M. Felici, F. Masia, and R. Trotta on the magneto-PL investigations presented in the second section of this chapter. We also wish to thank S. Rubini, F. Martelli, and V. Lebedev for providing the samples described. High magnetic field (30 T) measurements were performed at the High Field Magnet Laboratory by the support of EuroMagNET under the EU contract 228043 (Nijmegen, The Netherlands) and we appreciate local support from J. C. Maan and P. C. M. Christianen. Finally, it is our pleasure to acknowledge the COST Action MP0805.


  1. 1.
    H.B. Bebb, E.W. Williams, Semiconductors and Semimetals, vol. 8, ed. by R.K. Willardson, A.C. Beer (Academic, New York, 1966), pp. 181–392Google Scholar
  2. 2.
    M. Gershenzon, Semiconductors and Semimetals, vol. 2, ed. by R.K. Willardson, A.C. Beer (Academic, New York, 1966), pp. 316Google Scholar
  3. 3.
    Y. P. Varshni, Phys. Stat. Sol. 19, 419 (1967)Google Scholar
  4. 4.
    J.I. Pankove, J. Appl. Phys. 39, 5368 (1968)Google Scholar
  5. 5.
    J.R. Haynes, H.B. Briggs, Phys. Rev. 86, 647 (1952)Google Scholar
  6. 6.
    G.B. Stringfellow, P.E. Greene, J. Appl. Phys. 40, 502 (1969)Google Scholar
  7. 7.
    P.Y. Yu, M. Cardona, Solid State Commun. 9, 1421 (1971)Google Scholar
  8. 8.
    P.Y. Yu, M. Cardona, Fundamentals of Semiconductors – Physics and Materials Properties (Springer, Berlin, 2005)Google Scholar
  9. 9.
    A. Einstein, Z. Physik 18, 121 (1917)Google Scholar
  10. 10.
    A. Einstein, P. Ehrenfest, Z. Physik 19, 301 (1923)Google Scholar
  11. 11.
    W. van Roosbroeck, W. Shockley, Phys. Rev. 94, 1558 (1954)Google Scholar
  12. 12.
    D.E. Mc Cumber, Phys. Rev. 136, A954 (1964)Google Scholar
  13. 13.
    G. Laher, F. Stern, Phys. Rev.133, A553 (1964)Google Scholar
  14. 14.
    J.S. Blakemore, Semiconductor statistics (Pergamon Press, New York, 1962), Ch. 4Google Scholar
  15. 15.
    G.W. Gobeli, H.Y. Fan, Semiconductor Research, Second Quarterly Rept. (Purdue University, Lafayette, 1956); see also Ref. [6]Google Scholar
  16. 16.
    L. Pavesi, M. Guzzi, J. Appl. Phys. 75, 4779 (1994)Google Scholar
  17. 17.
    E.P. O’Reilly, A. Lindsay, P.J. Klar, A. Polimeni, M. Capizzi, Semicond. Sci. Technol. 24, 033001 (2009)Google Scholar
  18. 18.
    G. Pettinari, A. Polimeni, J.H. Blokland, R. Trotta, P.C.M. Christianen, M. Capizzi, J.C. Maan, X. Lu, E.C. Young, T. Tiedje, Phys. Rev. B 81, 235211 (2010)Google Scholar
  19. 19.
    D.G. Thomas, J.J. Hopfield, C.J. Frosch, Phys. Rev. Lett. 15, 857 (1965)Google Scholar
  20. 20.
    D.G. Thomas, J.J. Hopfield, Phys. Rev. 150, 680 (1966)Google Scholar
  21. 21.
    M. Felici, A. Polimeni, A. Miriametro, M. Capizzi, H.P. Xin, C.W. Tu, Phys. Rev. B 71, 045209 (2005)Google Scholar
  22. 22.
    J.J. Hopfield, P.J. Dean, D.G. Thomas, Phys. Rev. 158, 748 (1967)Google Scholar
  23. 23.
    E. Cohen, M. Sturge, Phys. Rev. B 15, 1039 (1977)Google Scholar
  24. 24.
    N.F. Mott, E.A. Davis, Electronic Processes in Noncrystalline Materials (Oxford University Press, Oxford, 1971)Google Scholar
  25. 25.
    T. Niebling, O. Rubel, W Heimbrodt, W. Stolz, S.D. Baranovskii, P.J. Klar, J.F. Geisz, J. Phys. Condens. Matter 20, 015217 (2008)Google Scholar
  26. 26.
    P.J. Wiesner, R.A. Street, H.D. Wolf, Phys. Rev. Lett. 35, 1366 (1975)Google Scholar
  27. 27.
    A. Polimeni, D. Marangio, M. Capizzi, A. Frova, F. Martelli, Appl. Phys. Lett. 65, 1254 (1994)Google Scholar
  28. 28.
    C. Weisbuch, Solid-State Electron.21, 179 (1978)Google Scholar
  29. 29.
    A. Patanè, A. Polimeni, M. Capizzi, F. Martelli, Phys. Rev. B 52, 2784 (1995)Google Scholar
  30. 30.
    J. Singh, K.K. Bajaj, S. Chauduri, Appl. Phys. Lett. 44, 805 (1994)Google Scholar
  31. 31.
    S. Hong, J. Singh, Appl. Phys. Lett. 49, 331 (1986)Google Scholar
  32. 32.
    J. Singh, K.K. Bajaj, J. Appl. Phys. 57, 5433 (1985); and references thereinGoogle Scholar
  33. 33.
    H.P. Xin, C.W. Tu, Appl. Phys. Lett. 72, 2442 (1998)Google Scholar
  34. 34.
    M. Hetterich, M.D. Dawson, A.Yu. Egorov, D. Bernklau, H. Riechert, Appl. Phys. Lett. 76, 1030 (2000)Google Scholar
  35. 35.
    D. Ouadjaout, Y. Marfaing, Phys. Rev. B 41, 12096 (1990)Google Scholar
  36. 36.
    A. Polimeni, M. Capizzi, M. Geddo, M. Fischer, M. Reinhardt, A. Forchel, Appl. Phys. Lett. 77, 2870 (2000)Google Scholar
  37. 37.
    B. Halperin, M. Lax, Phys. Rev. 148, 722 (1966)Google Scholar
  38. 38.
    A. Aít-Ouali, R.-F. Yip, J.L. Brebner, R.A. Masut, J. Appl. Phys. 83, 3153 (1998)Google Scholar
  39. 39.
    M. Oueslati, C. Benoit à la Guillaume, M. Zouaghi, Phys. Rev. B 37, 3037 (1988)Google Scholar
  40. 40.
    G. Bastard, C. Delalande, M.H. Meynadier, P.M. Frijlink, M. Voos, Phys. Rev. B 29, 7042 (1984)Google Scholar
  41. 41.
    F. Yang, M. Wilkinson, E.J. Austin, K.P. O’Donnell, Phys. Rev. Lett. 70, 323 (1993)Google Scholar
  42. 42.
    M. Wilkinson, F. Yang, E.J. Austin, K.P. O’Donnell, J. Phys. Condens. Matter 4, 8863 (1992)Google Scholar
  43. 43.
    E.-X. Ping, V. Dalal, J. Appl. Phys. 74, 5349 (1993)Google Scholar
  44. 44.
    M. Gurioli, A. Vinattieri, J. Martinez-Pator, M. Colocci, Phys. Rev. B 50, 11817 (1994)Google Scholar
  45. 45.
    A. Polimeni, A. Patanè, M. Grassi Alessi, M. Capizzi, F. Martelli, A. Bosacchi, S. Franchi, Phys. Rev. 54, 16389 (1996)Google Scholar
  46. 46.
    M.S. Skolnick, J.M. Rorison, K.J. Nash, D.J. Mowbray, P.R. Tapster, S.J. Bass, A.D. Pitt, Phys. Rev. Lett. 58, 2130 (1987)Google Scholar
  47. 47.
    A. Selloni, S. Modesti, M. Capizzi, Phys. Rev. B 30, 821 (1984); and references thereinGoogle Scholar
  48. 48.
    T.S. Moss, Proc. Phys. Soc. B 67, 775 (1954)Google Scholar
  49. 49.
    E. Burstein, Phys. Rev. 93, 632 (1954)Google Scholar
  50. 50.
    W. Walukiewicz, S.X. Li, J. Wu, K.M. Yu, J.W. Ager III, E.E. Haller, Hai Lu, William J. Schaff, J. Cryst. Growth 269, 119 (2004)Google Scholar
  51. 51.
    W. Walukiewicz, J. W. Ager III, K. M. Yu, Z. Liliental-Weber, J. Wu, S.X. Li, R.E. Jones, J.D. Denlinger, J. Phys. D 39 R83 (2006); and references thereinGoogle Scholar
  52. 52.
    G. Pettinari, F. Masia, M. Capizzi, A. Polimeni, M. Losurdo, G. Bruno, T.H. Kim, S. Choi, A. Brown, V. Lebedev, V. Cimalla, O. Ambacher, Phys. Rev. B 77, 125207 (2008)Google Scholar
  53. 53.
    G. Pettinari, Electronic properties and response to hydrogen incorporation in novel semiconductors materials: GaAsN, GaAsBi, and InN, Ph. D. thesis, Sapienza University of Rome (2008)Google Scholar
  54. 54.
    E.O. Kane, Phys. Rev. 131, 79 (1963)Google Scholar
  55. 55.
    A.R. Goñi, K. Syassen, Optical properties of semiconductors under pressure, High Pressure in Semiconductor Physics I, ed. by T. Suski, W. Paul Semiconductors and Semimetals, vol. 54, R.K. Willardson, E.R. Weber Series eds. (Academic, San Diego, 1998), p. 324Google Scholar
  56. 56.
    G. Wannier, Elements of Solid State Theory (Cambridge University Press, Cambridge, 1959)Google Scholar
  57. 57.
    F. Bassani, G. Pastori Parravicini, Electronic States and Optical Transitions in Solids (Pergamon Press, Oxford, 1975)Google Scholar
  58. 58.
    D.L. Dexter, R.S. Knox, Excitons (Interscience, New York, 1965)Google Scholar
  59. 59.
    R.S. Knox, Theory of Excitons, Solid State Physics, F. Seitz, D. Turnbull (Academic, New York, 1963)Google Scholar
  60. 60.
    D.G. Thomas, J.J. Hopfield, Phys. Rev. 124, 657 (1961)Google Scholar
  61. 61.
    W. Rosner, G. Wunner, H. Herold, H. Ruder, J. Phys. B: At. Mol. Phys. 17, 29 (1984)Google Scholar
  62. 62.
    J.A. Rossi, C.M. Wolfe, J.O. Dimmock, Phys. Rev. Lett. 25, 1614 (1970)Google Scholar
  63. 63.
    W. Rühle, E. Göbel, Phys. Stat. Sol. (b) 78, 311 (1976)Google Scholar
  64. 64.
    D. Bimberg, Phys. Rev. B 18, 1794 (1978)Google Scholar
  65. 65.
    P.J. Dean, H. Venghaus, P.E. Simmonds, Phys. Rev. B 18, 6813 (1978)Google Scholar
  66. 66.
    S. Zemon, P. Norris, E. S. Koteles, G. Lambert, J. Appl. Phys. 59, 2828 (1986)Google Scholar
  67. 67.
    X.L. Zheng, D. Heiman, B. Lax, F.A. Chambers, K.A. Stair, Appl. Phys. Lett. 52, 984 (1988)Google Scholar
  68. 68.
    B.J. Skromme, R. Bhat, M.A. Koza, S.A. Schwarz, T.S. Ravi, D.M. Hwang, Phys. Rev. Lett. 65, 2050 (1990)Google Scholar
  69. 69.
    F. Masia, A. Polimeni, G. Baldassarri Höger von Högersthal, M. Bissiri, M. Capizzi, P.J. Klar, W. Stolz, Appl. Phys. Lett. 82, 4474 (2003)Google Scholar
  70. 70.
    F. Masia, G. Pettinari, A. Polimeni, M. Felici, A. Miriametro, M. Capizzi, A. Lindsay, S.B. Healy, E.P. O’Reilly, A. Cristofoli, G. Bais, M. Piccin, S. Rubini, F. Martelli, A. Franciosi, P.J. Klar, K. Volz, W. Stolz, Phys. Rev. B 73, 073201 (2006)Google Scholar
  71. 71.
    A. Lindsay, E.P. O’Reilly, Phys. Rev. Lett. 93, 196402 (2004)Google Scholar
  72. 72.
    G. Pettinari, A. Polimeni, F. Masia, R. Trotta, M. Felici, M. Capizzi, T. Niebling, W. Stolz, P.J. Klar, Phys. Rev. Lett. 98, 146402 (2007)Google Scholar
  73. 73.
    L.M. Roth, B. Lax, S. Zwerdling, Phys. Rev. 114, 90 (1959)Google Scholar
  74. 74.
    G. Pettinari, A. Polimeni, M. Capizzi, J.H. Blokland, P.C.M. Christianen, J.C. Maan, V. Lebedev, V. Cimalla, O. Ambacher, Phys. Rev. B 79, 165207 (2009)Google Scholar
  75. 75.
    J.S. Blakemore, J. Appl. Phys. 53, R123 (1982)Google Scholar
  76. 76.
    L.R. Bailey, T.D. Veal, P.D.C. King, C.F. McConville, J. Pereiro, J. Grandal, M.A. Sánchez-Garcìa, E. Muñoz, E. Calleja, J. Appl. Phys. 104, 113716 (2008)Google Scholar
  77. 77.
    M. Millot, N. Ubrig, J.-M. Poumirol, I. Gherasoiu, W. Walukiewicz, S. George, O. Portugall, J. Léotin, M. Goiran, J.-M. Broto, Phys. Rev. B 83, 125204 (2011)Google Scholar
  78. 78.
    A.A. Klochikhin, V.Y. Davydov, V.V. Emstev, A.V. Sakharov, V.A. Kapitonov, B.A. Andreev, H. Lu, W.J. Shaff, Phys. Rev. B 71, 195207 (2005)Google Scholar
  79. 79.
    X. Wang, S.-B. Che, Y. Ishitani, A. Yoshikawa, Appl. Phys. Lett. 90, 201903 (2007)Google Scholar
  80. 80.
    X. Wang, S.-B. Che, Y. Ishitani, A. Yoshikawa, Appl. Phys. Lett.92, 132108 (2008)Google Scholar
  81. 81.
    Ü. Özgür, Y.I. Alivov, C. Liu, A. Teke, M.A. Reshchikov, S. Doan, V. Avrutin, S.-J. Cho, H. Morkoç, J. Appl. Phys. 98, 041301 (2005)Google Scholar
  82. 82.
    J.-J. Shi, C.-X. Xia, S.-Y. Wei, Z.-X. Liu, J. Appl. Phys. 97, 083705 (2005)Google Scholar
  83. 83.
    H. Pettersson, L. Landin, R. Liu, W. Seifert, M.-E. Pistol, L. Samuelson, Appl. Phys. Lett. 85, 5046 (2004)Google Scholar
  84. 84.
    K.J. Nash, M.S. Skolnick, P.A. Claxton, J.S. Roberts, Phys. Rev. B 39, 10943 (1989)Google Scholar
  85. 85.
    S.N. Walck, T.L. Reinecke, Phys. Rev. B 57, 9088 (1998)Google Scholar
  86. 86.
    M. Felici, A. Polimeni, G. Salviati, L. Lazzarini, N. Armani, F. Masia, M. Capizzi, F. Martelli, M. Lazzarino, G. Bais, M. Piccin, S. Rubini, A. Franciosi, Adv. Mater. 18, 1993 (2006)Google Scholar
  87. 87.
    R. Trotta, A. Polimeni, F. Martelli, G. Pettinari, M. Capizzi, L. Felisari, S. Rubini, M. Francardi, A. Gerardino, P.C.M. Christianen, J.C. Maan, Adv. Mater. 23, 2706 (2011)Google Scholar
  88. 88.
    M. Geddo, T. Ciabattoni, G. Guizzetti, M. Galli, M. Patrini, A. Polimeni, R. Trotta, M. Capizzi, G. Bais, M. Piccin, S. Rubini, F. Martelli, A. Franciosi, Appl. Phys. Lett. 90, 091907 (2007)Google Scholar
  89. 89.
    R. Trotta, D. Giubertoni, A. Polimeni, M. Bersani, M. Capizzi, F. Martelli, S. Rubini, G. Bisognin, M. Berti, Phys. Rev. B 80, 195206 (2009)Google Scholar
  90. 90.
    I.E. Itskevich, M. Henini, H.A. Carmona, L. Eaves, P. Main, D.K. Maude, J.C. Portal, Appl. Phys. Lett. 70, 505 (1997)Google Scholar
  91. 91.
    A.H. MacDonald, D.S. Ritchie, Phys. Rev. B 33, 8336 (1986)Google Scholar
  92. 92.
    D. Cabib, E. Fabri, G. Fiorio, Solid State Commun. 9, 1517 (1971)Google Scholar
  93. 93.
    D. Cabib, E. Fabri, G. Fiorio, Il Nuovo Cimento 10B, 185 (1972)Google Scholar
  94. 94.
    Yong Zhang, A. Mascarenhas, E.D. Jones, J. Appl. Phys. 83, 448 (1998)Google Scholar
  95. 95.
    S. Shokhovets, O. Ambacher, G. Gobsch, Phys. Rev. B 76, 125203 (2007)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.CNISM-Dipartimento di FisicaSapienza Università di RomaRomaItaly

Personalised recommendations