Skip to main content

The use of Focused Ion Beam to Build Nanodevices with Graphitic Structures

  • Chapter
  • First Online:
  • 1083 Accesses

Abstract

The modification of samples using focused ion beam (FIB) is a very powerful technique in many areas of material science, especially on modification and construction of nanodevices. The aim of this work is the creation of defects, fabrication of ordered patterns and direct deposition of Pt contacts on graphitic structures (from few layers graphene to many layers graphite) by using a Ga+ FIB source together with a field emission gun scanning electron microscope (FEG-SEM) in a dual beam platform. Using this platform, FIB capabilities for fabrication of nanodevices for scientific and technological development are investigated. Micro- Raman Spectroscopy was used to track the changes caused by these fabrication processes by analyzing the ratio between the defect induced Raman D band and the structural G band. This approach provides information about the performance and the damages caused by dual beam techniques when used on graphene samples for device applications.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Seliger, R. L., Kubena, R. L, Olney, R. D., Ward, J. W., Wang, V.: High-resolution, ionbeam processes for microstructure fabrication. J. Vac. Sci. Technol. 16, 1610-1612 (1979).

    Article  CAS  Google Scholar 

  2. Giannuzzi, L. A.: Introduction to focused ion beam – Instrumentation, theory, techniques and pratice Springer, New York (2005).

    Google Scholar 

  3. Tseng, A. A.: Recent developments in micromilling using focused ion beam technology. J. Micromech. Microeng. 14, R15–R34 (2004).

    Article  CAS  Google Scholar 

  4. Reyntjens, S., Puers, R.: A review of focused ion beam applications in microsystem technology. J. Micromech. Microeng. 11, 287–300 (2001).

    Article  CAS  Google Scholar 

  5. Stokes, D. J., Wilhelmi, O., Reyntjens, S., Jiao, C., Roussel, L.: New methods for the study and fabrication of nano-structured materials using FIB SEM. J. Nanosci. Nanotechnol. 9, 1268-1271 (2009).

    Article  CAS  Google Scholar 

  6. Hernandez-Ramırez, F.; Rodriguez, J.; Casals, O.; Russinyol, E.; Vila, A.; Romano- Rodrıguez, A.; Morante, J. R.; and Abid, M. Sensors and Actuators B 2006, 118, 198.

    Article  Google Scholar 

  7. Gierak, J.: Focused ion beam technology and ultimate applications. Semicond. Sci. Technol. 24, 043001 (2009).

    Article  Google Scholar 

  8. O'Donnell, S. E., Buettner, M., Reinke, P.: Characterization of focused ion beam induced defect structures in graphite for the future guided self-assembly of molecules. J. Vac. Sci. Technol. B 27, 2209-2216 (2009).

    Article  Google Scholar 

  9. Melinon, P., Hannour, A., Bardotti, L., Prevel, B., Gierak, J., Bourhis, E., Faini, G., Canut, B.: Ion beam nanopatterning in graphite: characterization of single extended defects. Nanotechnology 19, 235305 (2008).

    Article  CAS  Google Scholar 

  10. Teweldebrhan, D., Balandina, A. A.: Modification of graphene properties due to electronbeam irradiation. Appl. Phys. Lett. 94, 013101 (2009)

    Article  Google Scholar 

  11. Krasheninnikov, A. V., Nordlund, K.: Ion and electron irradiation-induced effects in nanostructured materials. J. Appl. Phys. 107, 071301 (2010).

    Article  Google Scholar 

  12. Dresselhaus, M. S., Kalish, R.: Ion implantation in diamond, graphite and related materials. Berlin, Springer-Verlag (1992) and references contained therein.

    Google Scholar 

  13. Lopez, J. J.; Greer, F.; Greer, J. R.: Enhanced resistance of single-layer graphene to ion bombardment. J. Appl. Phys. 107, 104326 (2010).

    Article  Google Scholar 

  14. Zhou, Y. B.; Liao, Z. M.; Wang, Y. F.; Duesberg, G. S.; Xu, J.; Fu Q.; Wu, X. S.; Yu, D. P.: Ion irradiation induced structural and electrical transition in graphene. The J. Chem. Phys. 133, 234703 (2010).

    Article  Google Scholar 

  15. Tuinstra, F., Koenig, J. L.: Raman Spectrum of Graphite. J. Chem. Phys. 53, 1126-1130 (1970).

    Article  CAS  Google Scholar 

  16. Ferrari, A. C., Robertson. J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 61, 14095 (2000).

    Google Scholar 

  17. Jorio, A., Lucchese, M. M., Stavale, F., Achete, C. A.: Raman spectroscopy study of Ar+ bombardment in highly oriented pyrolytic graphite. Phys. Status Solidi B 246, 2689-2692 (2009).

    Article  CAS  Google Scholar 

  18. Krasheninnikov, A .V., Nordlund, K., Keinonen, J.: Energetics, structure, and long-range interaction of vacancy-type defects in carbon nanotubes: Atomistic simulations. Phys. Rev. B: Condens. Matter 65, 165423 (2002).

    Article  Google Scholar 

  19. Nakamura, K., Kitajima, M.: Ion-irradiation effects on the phonon correlation length of graphite studies by raman-spectroscopy. Phys. Rev. B: Condens. Matter Mater. Phys. 45, 78-82 (1992).

    Article  Google Scholar 

  20. Cançado, L. G., Takai, K., Enoki, T., Endo, M., Kim, Y. A., Mizusaki, H., Jorio, A., Coelho, L. N., Magalhaes-Paniago, R., Pimenta, M. A.: General equation for the determination of the crystallite size L-a of nanographite. Appl. Phys. Lett. 88, 163106 (2006).

    Article  Google Scholar 

  21. Lucchese, M. M., Stavale, F., Martins Ferreira, E. H., Vilani, C., Moutinho, M. V. O.,Capaz, R. B., Achete, C. A., Jorio, A.: Quantifying ion-induced defects and Raman relaxation length in graphene by Raman spectroscopy. Carbon 48, 1592-1597 (2010).

    Article  CAS  Google Scholar 

  22. Geim, A. K., Novoselov, K. S.: The rise of graphene. Nat. Mat. 6, 183-191 (2007).

    Article  CAS  Google Scholar 

  23. Ferrari, A. C., Meyer, J. C., Scardaci, V., Casiraghi, C., Lazzeri, M., Mauri, F., Piscanec, S., Jiang, D., Novoselov, K. S., Roth, S., Geim, A. K.: Raman Spectrum of Graphene and Graphene Layers. Phys. Rev. Lett. 97, 187401 (2006).

    Article  CAS  Google Scholar 

  24. Park, C. H., Yang, L., Son, Y. W., Cohen, M. L., Louie, S. G.: Anisotropic behaviours of massless Dirac fermions in graphene under periodic potentials Nat. Phys. 4, 213-217 (2008)

    CAS  Google Scholar 

  25. Cancado, L. G, Pimenta, M. A., Neves, B. R. A., Dantas. M. S. S. Jorio, A.: Influence of the atomic structure on the Raman spectra of graphite. Phys. Rev. Lett. 93, 247401 (2004)

    Google Scholar 

  26. Shailos, A.; Nativel, W.; Kasumov, A.; Collet, C.; Ferrier, M.; Gueron, S.; Deblock, R.; Bouchiat, H.: Proximity effect and multiple Andreev reflections in few-layer graphene. Europhys. Lett. 79, 57008 (2007).

    Article  Google Scholar 

  27. Shao, Q.; Liu, G.; Teweldebrhan, D.; Balandina, A. A.: High-temperature quenching of electrical resistance in graphene interconnects. Appl. Phys. Lett. 92, 202108 (2008).

    Article  Google Scholar 

  28. Fernández-Pacheco, A.; Teresa, J. M.; Córdoba, R.; Ibarra, M. R.: Metal-insulator transition in Pt-C nanowires grown by focused-ion-beam-induced deposition. Phys. Rev. B 79, 174204 (2009).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Archanjo, B.S. et al. (2012). The use of Focused Ion Beam to Build Nanodevices with Graphitic Structures. In: Böllinghaus, T., Lexow, J., Kishi, T., Kitagawa, M. (eds) Materials Challenges and Testing for Supply of Energy and Resources. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23348-7_21

Download citation

Publish with us

Policies and ethics