Skip to main content

Molecular Diversity of Fungi from Marine Oxygen-Deficient Environments (ODEs)

  • Chapter
  • First Online:
Biology of Marine Fungi

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 53))

Abstract

Molecular diversity surveys of marine fungi have demonstrated that the species richness known to date is just the tip of the iceberg and that there is a large extent of unknown fungal diversity in marine habitats. Reports of novel fungal lineages at higher taxonomic levels are documented from a large number of marine habitats, including the various marine oxygen-deficient environments (ODEs). In the past few years, a strong focus of eukaryote diversity research has been on a variety of ODEs, as these environments are considered to harbor a large number of organisms, which are highly divergent to known diversity and could provide insights into the early eukaryotic evolution. ODEs that have been targeted so far include shallow water sediments, hydrothermal vent systems, deep-sea basins, intertidal habitats, and fjords. Most, if not all, molecular diversity studies in marine ODEs have shown, that contrary to previous assumptions, fungi contribute significantly to the micro-eukaryotic community in such habitats. In this chapter, we have reanalyzed the environmental fungal sequences obtained from the molecular diversity survey in 14 different sites to obtain a comprehensive picture of fungal diversity in these marine habitats. The phylogenetic analysis of the fungal environmental sequences from various ODEs have grouped these sequences into seven distinct clades (Clade 1–7) clustering with well-known fungal taxa. Apart from this, four environmental clades (EnvClade A, B, C, and D) with exclusive environmental sequences were also identified. This has provided information on the positioning of the environmental sequences at different taxonomic levels within the major fungal phylums. The taxonomic distribution of these environmental fungal sequences into clusters and clades has also shown that they are not restricted by geographical boundaries. The distribution pattern together with the reports on the respiratory abilities of fungi under reduced oxygen conditions shows that they are highly adaptive and may have a huge ecological role in these oxygen deficient habitats.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexander E, Stock A, Breiner HW, Behnke A, Bunge J, Yakimov MM, Stoeck T (2009) Microbial eukaryotes in the hypersaline anoxic L’Atalante deep-sea basin. Environ Microb 11:360–381

    Article  CAS  Google Scholar 

  • Baas Becking LGM (1934) Geobiologie of inleiding tot de milieukunde. Van Stockum & Zoon, The Hague, The Netherlands

    Google Scholar 

  • Barghoorn ES, Linder DH (1944) Marine fungi: their taxonomy and biology. Farlowia 1:395–467

    Google Scholar 

  • Bass D, Howe A, Brown N, Barton H, Demidova M, Michelle H, Li L, Sanders H, Watkinson CV, Willcock S, Richards TA (2007) Yeast forms dominate fungal diversity in the deep oceans. Proc R Soc B 274:3069–3077

    Article  PubMed  CAS  Google Scholar 

  • Behnke A, Bunge J, Barger K, Breiner HW, Alla V, Stoeck T (2006) Microeukaryote community patterns along an O2/H2S gradient in a supersulfidic anoxic fjord (Framvaren, Norway). Appl Environ Microbiol 72:626–3636

    Article  Google Scholar 

  • Bollag JM, Tung G (1972) Nitrous oxide release by soil fungi. Soil Biol Biochem 4:271–276

    Article  CAS  Google Scholar 

  • Bruns TD (2001) ITS reality. Inoculum 52:2–3

    Google Scholar 

  • Buchan A, Newell SY, Moreta JIJ, Moran MA (2002) Analysis of internal transcribed spacer (ITS) regions of rRNA genes in fungal communities in a southeastern U.S. salt marsh. Microb Ecol 43:329–340

    Article  PubMed  CAS  Google Scholar 

  • Damare S, Raghukumar C, Raghukumar S (2006) Fungi in deep-sea sediments of the central Indian basin. Deep Sea Res I 53:14–27

    Article  Google Scholar 

  • Dawson SC, Pace NR (2002) Novel kingdom-level eukaryotic diversity in anoxic environments. Proc Natl Acad Sci U S A 99:8324–8329

    Article  PubMed  CAS  Google Scholar 

  • Dighton J (2003) Fungi in ecosystem processes. Marcel Dekker, New York

    Book  Google Scholar 

  • Dighton J (2007) Nutrient cycling by saprotrophic fungi in terrestrial habitats. In: Kubicek CP, Druzhinina IS (eds) The Mycota IV, environmental and microbial relationships, 2nd edn. Springer, Berlin

    Google Scholar 

  • Edgcomb VP, Kysela DT, Teske A, de Vera GA, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas Basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662

    Article  PubMed  CAS  Google Scholar 

  • Edgcomb VP, Orsi W, Leslin C, Epstein S, Bunge J, Jeon SO et al (2009) Protistan community patterns within the brine and halocline of deep hypersaline anoxic basins in the eastern Mediterranean Sea. Extremophiles 13:151–167

    Article  PubMed  Google Scholar 

  • Edgcomb VP, Beaudoin D, Gast R, Biddle JF, Teske A (2011) Marine subsurface eukaryotes: the fungal majority. Environ Microbiol 13:172–183

    Article  PubMed  CAS  Google Scholar 

  • Epstein S, López-García P (2007) ‘Missing’ protists: a molecular prospective. Biodivers Conserv 17:261–276

    Article  Google Scholar 

  • Fell JW, Boekhout T, Fonseca A, Sampaio JP (2001) Basidiomycetous yeasts. In: McLaughlin DJ, McLaughlin EG, Lemke PA (eds) Mycota VII. Part B, Systematics and evolution. Springer, Berlin

    Google Scholar 

  • Gessner RV (1980) Degradative enzyme production by salt-marsh fungi. Bot Mar 23:133–139

    Article  CAS  Google Scholar 

  • Gleason FH, Schmidt SK, Marano AV (2010) Can zoosporic true fungi grow or survive in extreme or stressful environments? Extremophiles 14:417–425

    Article  PubMed  Google Scholar 

  • Goregues CM, Michotey VD, Bonin PC (2005) Molecular, biochemical, and physiological approaches for understanding the ecology of denitrification. Mol Ecol 49:198–208

    CAS  Google Scholar 

  • Guarro J, Gene J, Stchigel AM (1999) Developments in fungal taxonomy. Clin Microbiol Rev 12:454–455

    PubMed  CAS  Google Scholar 

  • Gunner HB, Alexander M (1964) Anaerobic growth of Fusarium oxysporum. J Bacteriol 37:1309–1315

    Google Scholar 

  • Hibbett DS, Binder M, Bischoff JF et al (2007) A higher-level phylogenetic classification of the Fungi. Mycol Res 111:509–547

    Article  PubMed  Google Scholar 

  • Hugenholtz P, Pace NR (1996) Identifying microbial diversity in the natural environment: a molecular phylogenetic approach. Trends Biotechnol 14:190–197

    Article  PubMed  CAS  Google Scholar 

  • Hyde KD, Gareth Jones EB, Leana OE, Pointing SB, Poonyth AD, Vrijmoed LLP (1998) Role of fungi in marine ecosystems. Biodivers Conserv 7:1147–1611

    Article  Google Scholar 

  • Jebaraj CS, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109

    Article  Google Scholar 

  • Jebaraj CS, Raghukumar C, Behnke A, Stoeck T (2010) Fungal diversity in oxygen-depleted regions of the Arabian Sea revealed by targeted environmental sequencing combined with cultivation. FEMS Microbiol Ecol 71:399–412

    Article  PubMed  CAS  Google Scholar 

  • Jones EBG, Choeyklin R (2008) Ecology of marine and freshwater basidiomycetes. In: Boddy L, Franklan JC, West PV (eds) Ecology of saprotrophic basidiomycetes. Academic, New York

    Google Scholar 

  • Jones EBG, Hyde KD (2002) Succession: where to go from here? Fungal Divers 10:241–253

    Google Scholar 

  • Kagami M, de Bruin A, Ibelings BW, Donk EW (2007) Parasitic chytrids: their effects on phytoplankton communities and food-web dynamics. Hydrobiologia 578:113–129

    Article  Google Scholar 

  • Kamykowski D, Zentara SJ (1990) Hypoxia in the world ocean as recorded in the historical data set. Deep Sea Res 37:1861–1874

    Article  CAS  Google Scholar 

  • Kerwin JL, Johnson LM, Whisler HC, Tuiniga AR (1992) Infection and morphogenesis of Pythium marinum in species of Porphyra and other red algae. Can J Bot 70:1017–1024

    Article  Google Scholar 

  • Kis-Papo T (2005) Marine fungal communities. In: Dighton J, White JF, Oudemans P (eds) The Fungal Community: its Organization and Role in the Ecosystem. Taylor & Francis, Boca Raton, FL, pp 61–92

    Chapter  Google Scholar 

  • Knowles R (1982) Denitrification. Microbiol Rev 46:43–70

    PubMed  CAS  Google Scholar 

  • Kohlmeyer J, Kohlmeyer E (1979) Marine mycology. The higher fungi. Academic, New York

    Google Scholar 

  • Kurakov AV, Lavrent’ev RB, Nechitailo TY, Golyshin PN, Zvyagintsev DG (2008) Diversity of facultatively anaerobic microscopic mycelial fungi in soils. Microbiology 77:90–98

    Article  CAS  Google Scholar 

  • Lai X, Cao L, Tan H, Fang S, Huang Y, Zhou S (2007) Fungal communities from methane hydrate-bearing deep-sea marine sediments in South China Sea. ISME J 1:756–762

    Article  PubMed  CAS  Google Scholar 

  • Letcher PM, Powell MJ (2005) Kappamyces, a new genus in the Chytridiales (Chytridiomycota). Nova Hedwigia 80:113–133

    Google Scholar 

  • Levin LA (2003) Oxygen minimum zone benthos: adaptation and community response to hypoxia. In: Gibson RN, Atkinson RJ (eds) A oceanography and marine biology: an annual review. Taylor and Francis, New York, pp 1–45

    Google Scholar 

  • Le Calvez T, Burgaud G, MahÕ S, Barbier G, Vandenkoornhuyse P (2009) Fungal diversity in deep-sea hydrothermal ecosystems. Appl Environ Microbiol 75:6415–6421

    Google Scholar 

  • Lockhart RJ, van Dyke MI, Beadle IR, Humphreys P, McCarthy AJ (2006) Molecular detection of anaerobic gut fungi (Neocallimastigales) from landfill sites. Appl Environ Microbiol 72:5659–5661

    Article  PubMed  CAS  Google Scholar 

  • López-García P, Philippe H, Gail F, Moreira D (2003) Autochthonous eukaryotic diversity in hydrothermal sediment and experimental microcolonizers at the Mid-Atlantic Ridge. Proc Natl Acad Sci U S A 100:697–702

    Article  PubMed  Google Scholar 

  • López-García P, Vereshchaka A, Moreira D (2007) Eukaryotic diversity associated with carbonates and fluid-seawater interface in Lost City hydrothermal field. Environ Microbiol 9:546–554

    Article  PubMed  Google Scholar 

  • Luo Q, Krumholz LR, Najar FZ, Peacock AD, Roe BA, White DC, Elshahed MS (2005) Diversity of the microeukaryotic community insulfide-rich Zodletone Spring (Oklahoma). Appl Environ Microbiol 71:6175–6184

    Article  PubMed  CAS  Google Scholar 

  • Maheshwari R (2005) Species, their diversity and populations in fungi: experimental methods in biology. In: Maheshwari R (ed) Fungi experimental methods in biology, Mycology series 24. CRC, Boca Raton, FL, pp 191–205

    Google Scholar 

  • Maheshwari R, Bharadwaj G, Bhat MK (2000) Thermophilic fungi: their physiology and enzymes. Microbiol Mol Biol Rev 64:461–488

    Article  PubMed  CAS  Google Scholar 

  • Malosso E, Waite IS, English L, Hopkins DW, O’Donnell AG (2006) Fungal diversity in maritime Antarctic soils determined using a combination of culture isolation, molecular fingerprinting and cloning techniques. Polar Biol 29:552–561

    Article  Google Scholar 

  • Miller WG, Padhye AA, Bonn W, Jensen E, Brandt ME, Ridgway SH (2002) Cryptococcosis in a bottlenose dolphin (Tursiops truncatus) caused by Cryptococcus neoformans var. gattii. J Clin Microbiol 40:721–724

    Article  PubMed  Google Scholar 

  • Newell SY (1996) Established and potential impacts of eukaryotic mycelial decomposers in marine/terrestrial ecotones. J Exp Mar Biol Ecol 200:187–206

    Article  Google Scholar 

  • News Letter ISRO (2009) Discovery of new microorganisms in the stratosphere. http://www.isro.org/newsletters/scripts/newslettersin.aspx?indexjan2009jun2009. Accessed 29 Nov 2010

  • Nikolcheva L, Bärlocher F (2004) Taxon-specific fungal primers reveal unexpectedly high diversity during leaf decomposition in a stream. Mycol Prog 3:41–49

    Article  Google Scholar 

  • O’Brien HE, Parrent JL, Jackson JA, Moncalvo JM, Vilgalys R (2005) Fungal community analysis by large-scale sequencing of environmental samples. Appl Environ Microbiol 71:5544–5550

    Article  PubMed  Google Scholar 

  • Pang KL, Mitchell JI (2005) Molecular approaches for assessing fungal diversity in marine substrata. Bot Mar 48:332–347

    Article  CAS  Google Scholar 

  • Prasannari K, Sridhar KR (2001) Diversity and abundance of higher marine fungi on woody substrates along the west coast of India. Curr Sci 81:304–311

    Google Scholar 

  • Raghukumar C, Raghukumar S, Sharma S, Chandramohan D (1992) Endolithic fungi from deep-sea calcareous substrata: isolation and laboratory studies. In: Desai BN (ed) Oceanography of the Indian Ocean. Oxford IBH Publication, New Delhi

    Google Scholar 

  • Raghukumar C, Raghukumar S, Sheelu G, Gupta SM, Nath B, Rao BR (2004) Buried in time: culturable fungi in a deep-sea sediment core from the Chagos Trench, Indian Ocean. Deep Sea Res I 51:1759–1768

    CAS  Google Scholar 

  • Roberts PL, Mitchell J, Jones EBG (1996) Morphological and taxonomical identification of marine ascomycetes: detection of races in geographical isolates of Corollospora maritima by RAPD analysis. In: Rossen L, Dawson MT, Frisvad J (ed.) Fungal identification techniques EU 16510 EN. European Commission, Bruxelles

    Google Scholar 

  • Robinson CH (2001) Cold adaptation in Arctic and Antarctic fungi. New Phytol 151:341–353

    Article  CAS  Google Scholar 

  • Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus. 1- Field studies on decomposition of the brown alga Sargassum cinereum. J Agr Indian J Mar Sci 22:159–167

    CAS  Google Scholar 

  • Schadt CW, Martin AP, Lipson DA, Schmidt SK (2003) Seasonal dynamics of previously unknown fungal lineages in tundra soils. Science 301:1359–1361

    Article  PubMed  CAS  Google Scholar 

  • Shoun H, Kim DH, Uchiyama H, Sugiyama J (1992) Denitrification by fungi. FEMS Microbiol Lett 94:277–282

    Article  CAS  Google Scholar 

  • Slapeta J, Moreira D, Lopez-Garcıa P (2005) The extent of protist diversity: insights from molecular ecology of freshwater eukaryotes. Proc R Soc Lond [Biol] 272:2073–2081

    Article  CAS  Google Scholar 

  • Sparrow FK Jr (1936) Biological observations of the marine fungi of woods hole waters. Biol Bull 70:236–263

    Article  Google Scholar 

  • States JS, Christensen M (2001) fungi associated with biological soil crusts in desert grasslands of Utah and Wyoming. Mycologia 93:432–439

    Article  Google Scholar 

  • Stock A, Bunge J, Jurgens K, Stoeck T (2009) Protistan diversity in the suboxic and anoxic waters of the Gotland Deep (Baltic Sea) as revealed by 18S rRNA clone libraries. Aquat Microb Ecol 55:267–284

    Article  Google Scholar 

  • Stoeck T, Epstein S (2003) Novel eukaryotic lineages inferred from small-subunit rRNA analyses of oxygen depleted marine environments. Appl Environ Microbiol 69:2657–2663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Taylor GT, Epstein SS (2003) Novel eukaryotes from the permanently anoxic Cariaco Basin (Caribbean Sea). Appl Environ Microbiol 69:5656–5663

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Hayward B, Taylor GT, Varela R, Epstein SS (2006) A multiple PCR-primer approach to access the microeukaryotic diversity in environmental samples. Protist 157:31–43

    Article  PubMed  CAS  Google Scholar 

  • Stoeck T, Kasper J, Bunge J, Leslin C, Ilyin V, Epstein SS (2007a) Protistan diversity in the arctic: a case of paleoclimate shaping modern biodiversity? PLoS One 2:e728

    Article  PubMed  Google Scholar 

  • Stoeck T, Zuendorf A, Breiner HW, Behnke A (2007b) A molecular approach to identify active microbes in environmental eukaryote clone libraries. Microb Ecol 53:328–339

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Miyake H, Kawato M, Maruyama T (2005) Genetic diversity of microbial eukaryotes in anoxic sediment around fumaroles on a submarine caldera floor based on the small-subunit rDNA phylogeny. Extremophiles 9:185–196

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Tsuchiyaa M, Kawatoa M, Ogurib K, Kitazatob H, Maruyamaa T (2007a) Diversity of microbial eukaryotes in anoxic sediment of the saline meromictic lake Namako-ike (Japan): on the detection of anaerobic or anoxic-tolerant lineages of eukaryotes. Protist 158:51–64

    Article  PubMed  CAS  Google Scholar 

  • Takishita K, Yubuki N, Kakizoe N, Inagaki Y, Maruyama T (2007b) Diversity of microbial eukaryotes in sediment at a deep-sea methane cold seep: surveys of ribosomal DNA libraries from raw sediment samples and two enrichment cultures. Extremophiles 11:563–576

    Article  PubMed  CAS  Google Scholar 

  • Turner BC, Perkins DD, Fairfield A (2001) Neurospora from natural populations: a global study. Fungal Genet Biol 32:67–92

    Article  PubMed  CAS  Google Scholar 

  • Usuda K, Toritsuka N, Matsuo Y, Kim DH, Shoun H (1995) Denitrification by the fungus Cylindrocarpon tonkinense: anaerobic cell growth and two isozyme forms of cytochrome P-450nor. Appl Environ Microbiol 61:883–889

    PubMed  CAS  Google Scholar 

  • van Tuinen D, Jacquot E, Zhao B, Gollotte A, Gianinazzi-Pearson V (1998) Characterisation of root colonization profiles by a microcosm community of arbuscular mycorrhizal fungi using 25S rDNA-targeted nested PCR. Mol Ecol 7:879–887

    Article  PubMed  Google Scholar 

  • Wainwright M, Wickramasinghe NC, Narlikar JV, Rajaratnam P (2003) Microorganisms cultured from stratospheric air samples obtained at 41 km. FEMS Microbiol Lett 218:161–165

    Article  PubMed  CAS  Google Scholar 

  • Wyrtki K (1962) The oxygen minima in relation to ocean circulation. Deep Sea Res 9:11–23

    CAS  Google Scholar 

  • Zack JC, Wildman HG (2004) Fungi in stressful environments. In: Mueller GM, Bills GF, Foster MS (eds) Biodiversity of fungi, inventory and monitoring methods. J Biol Chem 271:16263–16267

    Google Scholar 

  • Zhou Z, Takaya N, Nakamura A, Yamaguchi M, Takeo K, Shoun H (2002) Ammonia fermentation, a novel anoxic metabolism of nitrate by fungi. J Biol Chem 277:1892–1896

    Article  PubMed  CAS  Google Scholar 

  • Zuccaro A, Schulz B, Mitchell JI (2003) Molecular detection of ascomycetes associated with Fucus serratus. Mycol Res 107:451–466

    Article  Google Scholar 

  • Zuendorf A, Bunge J, Behnke A, Barger KJA, Stoeck T (2006) Diversity estimates of microeukaryotes below the chemocline of the anoxic Mariager Fjord, Denmark. Microb Ecol 58:476–491

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This is NIO’s contribution no.4950.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cathrine Sumathi Jebaraj .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jebaraj, C.S., Forster, D., Kauff, F., Stoeck, T. (2012). Molecular Diversity of Fungi from Marine Oxygen-Deficient Environments (ODEs). In: Raghukumar, C. (eds) Biology of Marine Fungi. Progress in Molecular and Subcellular Biology(), vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23342-5_10

Download citation

Publish with us

Policies and ethics