Skip to main content

Thraustochytrids, a Neglected Component of Organic Matter Decomposition and Food Webs in Marine Sediments

  • Chapter
  • First Online:
Book cover Biology of Marine Fungi

Part of the book series: Progress in Molecular and Subcellular Biology ((MMB,volume 53))

Abstract

Decomposition of organic matter in marine sediments is a critical step influencing oxygen and carbon fluxes. In addition to heterotrophic bacteria and fungi, osmoheterotrophic protists may contribute to this process, but the extent of their role as decomposers is still unknown. Among saprophytic protists, the thraustochytrids have been isolated from different habitats and substrates. Recently, they have been reported to be particularly abundant in marine sediments characterized by the presence of recalcitrant organic matter such as seagrass and mangrove detritus where they can reach biomass comparable to those of other protists and bacteria. In addition, their capacity to produce a wide spectrum of enzymes suggests a substantial role of thraustochytrids in sedimentary organic decomposition. Moreover, thraustochytrids may represent a food source for several benthic microorganisms and animals and may be involved in the upgrading of nutrient-poor organic detritus. This chapter presents an overview on studies of thraustochytrids in benthic ecosystems and discusses future prospectives and possible methods to quantify their role in benthic food webs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alongi DM (1993) Extraction of protists in aquatic sediments via density gradient centrifugation. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Aquatic microbial ecology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Alonzo F, Virtue P, Nicol S, Nichols PD (2005) Lipids as trophic markers in Antarctic krill. III. Temporal changes in digestive gland lipid composition of Euphausia superba in controlled conditions. Mar Ecol Prog Ser 296:81–91

    Article  CAS  Google Scholar 

  • Arts MT, Ackman RG, Holub BJ (2001) “Essential fatty acids” in aquatic ecosystems: a crucial link between diet and human health and evolution. Can J Fish Aquat Sci 58(1):122–137

    Article  CAS  Google Scholar 

  • Bahnweg G (1979a) Studies on the physiology of Thraustochytriales I. Growth requirements and nitrogen nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp., and Labyrinthuloides spp. Veröff Inst Meeresforsch Bremerh 17:245–268

    CAS  Google Scholar 

  • Bahnweg G (1979b) Studies on the physiology of Thraustochytriales II. Carbon nutrition of Thraustochytrium spp., Schizochytrium sp., Japonochytrium sp., Ulkenia spp., and Labyrinthuloides spp. Veröff Inst Meeresforsch Bremerh 17:269–273

    CAS  Google Scholar 

  • Berner RA (1989) Biogeochemical cycles of carbon and sulphur and their effects on atmospheric oxygen over Phanerozoic time. Palaeogeogr Palaeoclimatol Palaeoecol 73:97–112

    Article  Google Scholar 

  • Bongiorni L, Dini F (2002) Distribution and abundance of thraustochytrids in different Mediterranean coastal habitats. Aquat Microb Ecol 30:49–56

    Article  Google Scholar 

  • Bongiorni L, Pignataro L, Santangelo G (2004) Thraustochytrids (fungoid protists): an unexplored component of marine sediment microbiota. Sci Mar 68(1):43–48

    CAS  Google Scholar 

  • Bongiorni L, Mirto S, Pusceddu A, Danovaro R (2005a) Response of benthic protozoa and thraustochytrid protists to fish-farm impact in seagrass (Posidonia oceanica) and soft bottom sediments. Microb Ecol 50:268–276

    Article  PubMed  CAS  Google Scholar 

  • Bongiorni L, Pusceddu A, Danovaro R (2005b) Enzymatic activities of epiphytic and benthic thraustochytrids involved in organic matter degradation. Aquat Microb Ecol 41:299–305

    Article  Google Scholar 

  • Boschker HTS, Middelburg JJ (2002) Stable isotopes and biomarkers in microbial ecology. FEMS Microbiol Ecol 40:85–95

    Article  PubMed  CAS  Google Scholar 

  • Bremer GB, Talbot G (1995) Cellulolytic enzyme activity in the marine protist Schizochytrium aggregatum. Bot Mar 38:37–41

    Article  CAS  Google Scholar 

  • Damare V, Raghukumar S (2008) Abundance of thraustochytrids and bacteria in the equatorial Indian Ocean, with relation to transparent exopolymeric particles (TEPs). FEMS Microbiol Ecol 65(1):40–49

    Article  PubMed  CAS  Google Scholar 

  • Danovaro R (2000) Benthic microbial loop and meiofaunal response to oil induced disturbance in coastal sediments: a review. Int J Environ Pollut 13:380–391

    Article  CAS  Google Scholar 

  • DeLong EF, Wickham GS, Pace NR (1989) Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:1360–1363

    Article  PubMed  CAS  Google Scholar 

  • Edgecomb VP, Kysela DT, Teske A, Gomez A, Sogin ML (2002) Benthic eukaryotic diversity in the Guaymas basin hydrothermal vent environment. Proc Natl Acad Sci U S A 99:7658–7662

    Article  Google Scholar 

  • Epstein SS (1995) Simultaneous enumeration of protozoa and micrometazoa from marine sandy sediments. Aquat Microb Ecol 9:219–227

    Article  Google Scholar 

  • Epstein SS (1997a) Microbial food webs in marine sediments. I. Trophic interactions and grazing rates in two tidal flat communities. Microb Ecol 34:188–198

    Article  PubMed  Google Scholar 

  • Epstein SS (1997b) Microbial food webs in marine sediments. II. Seasonal changes in trophic interactions in sandy tidal flat communities. Microb Ecol 34:188–198

    Article  PubMed  Google Scholar 

  • Fell JW, Findlay RH (1988) Biochemical indicators of microbial decomposition process in coastal and oceanic environments. In: Thompson MF, Tirmizi N (eds) Marine science of the Arabian Sea. American Institute of Sciences, Washington

    Google Scholar 

  • Fenchel T (1980) Relation between particle size selection and clearance in suspension feeding ciliates. Limnol Oceanogr 25:733–738

    Article  Google Scholar 

  • Gaertner A (1967) Marine niedere Pilze in Nordsee und Nordatlantik. Ber Dtsch Bot Ges 82:287–306

    Google Scholar 

  • Gaertner A (1968) Eine Methode des quantitativen Nachweises niederer mit Pollen koederbarer Pilze im Meerwasser und im Sediment. Veröff Inst Meeresforsch Bremerh 3:75–92

    Google Scholar 

  • Gaertner A (1982) Lower marine fungi from the Northwest African upwelling areas and from the Atlantic off Portugal. Meteor Forsch Ergebn D 34:9–30

    Google Scholar 

  • Gaertner A, Raghukumar S (1980) Ecology of thraustochytrids (lower marine fungi) in the Fladen Ground and other parts of the North Sea. I. Meteor Forsch Ergebn A 22:165–185

    Google Scholar 

  • Galluzzi L, Penna A, Bertozzini E, Vila M, Garces E, Magnani M (2004) Development of a real-time PCR assay for rapid detection and quantification of Alexandrium minutum (a dinoflagellate). Appl Environ Microbiol 70:1199–1206

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni SJ, DeLong EF, Olsen GJ, Pace NR (1988) Phylogenetic group-specific oligodeoxynucleotide probes for identification of single microbial cells. J Bacteriol 170:720–726

    PubMed  CAS  Google Scholar 

  • Glöckner FO, Amann R, Alfreider A et al (1996) An in situ hybridization protocol for detection and identification of planktonic bacteria. Syst Appl Microbiol 19:403–406

    Article  Google Scholar 

  • Gooday GW (1990) The ecology of chitin degradation. Adv Microb Ecol 11:387–430

    CAS  Google Scholar 

  • Hedges JI, Keil RG (1995) Sedimentary organic matter preservation: an assessment and speculative synthesis. Mar Chem 49:81–115

    Article  CAS  Google Scholar 

  • Heiland R, Ulken A (1989) Untersuchungen zum Chitinabbau von niederen Pilzen. Nova Hedwigia 48:495–504

    Google Scholar 

  • Huang J, Aki T, Hachida K, Yokochi T, Kawamoto S, Shigeta S, Ono K, Suzuki O (2001) Profile of polyunsaturated fatty acids produced by Thraustochytrium sp. KK17-3. J Am Oil Chem Soc 78:605–610

    Article  CAS  Google Scholar 

  • Ishii K, Mussmann M, MacGregor BJ, Amann R (2004) An improved fluorescence in situ hybridization protocol for the identification of bacteria and archaea in marine sediment. FEMS Microbiol Ecol 50:203–212

    Article  PubMed  CAS  Google Scholar 

  • Kimura H, Fukuba T, Naganuma T (1999) Biomass of thraustochytrid protists in coastal water. Mar Ecol Prog Ser 189:27–33

    Article  CAS  Google Scholar 

  • Liu Q, Allam B, Collier JL (2009) Quantitative real-time PCR assay for QPX (Thraustochytriidae), a parasite of the hard clam (Mercenaria mercenaria). Appl Environ Microbiol 75(14):4913–4918

    Article  PubMed  CAS  Google Scholar 

  • Llobet-Brossa E, Rosselló-Mora R, Amann R (1998) Microbial community composition of Wadden sea sediments as revealed by fluorescence in situ hybridization. Appl Environ Microbiol 64:2691–2696

    PubMed  Google Scholar 

  • Lyons MM, Smolowitz R, Dungan CF, Roberts SB (2006) Development of a real time quantitative PCR assay for the hard clam pathogen Quahog Parasite Unknown (QPX). Dis Aquat Organ 72:45–52

    Article  PubMed  CAS  Google Scholar 

  • Manini E, Fiordelmondo C, Gambi C, Pusceddu A, Danovaro R (2003) Benthic microbial loop functioning in coastal lagoons: a comparative approach. Oceanol Acta 26:27–38

    Article  CAS  Google Scholar 

  • Mayer LM, Schick LL, Sawyer T, Plante CJ, Jumars PA, Self RL (1995) Bioavailable amino acids in sediments: a biomimetic, kinetics-based approach. Limnol Oceanogr 40:511–520

    Article  CAS  Google Scholar 

  • Middelburg JJ, Nieuwenhuize J, Van-Breugel P (1999) Black carbon in marine sediments. Mar Chem 65:245–252

    Article  CAS  Google Scholar 

  • Miller JD, Jones EBG (1983) Observations on the association of thraustochytrids marine fungi with decaying seaweed. Bot Mar 26:345–351

    Article  Google Scholar 

  • Mohapatra BR, Fukami K (2004) Production of aminopeptidase by marine heterotrophic nanoflagellates. Aquat Microb Ecol 34:129–137

    Article  Google Scholar 

  • Nagano N, Matsui S, Kuramura T, Taoka Y, Honda D, Hayashi M (2011) The distribution of extracellular cellulase activity in marine eukaryotes, thraustochytrids. Mar Biotechnol 13:133–136

    Article  PubMed  CAS  Google Scholar 

  • Phillips NW (1984) Role of different microbes and substrates as potential supplies of specific essential nutrients to marine detritivores. Bull Mar Sci 35:283–298

    Google Scholar 

  • Place AR (1996) The biochemical basis and ecological significance of chitin digestion. In: Muzzarelli RAA (ed) Chitin enzymology, vol 2. Atec Edizioni, Grottammare

    Google Scholar 

  • Radajewski S, Ineson P, Parekh NP, Murrell JC (2000) Stable-isotope probing as a tool in microbial ecology. Nature 403:646–649

    Article  PubMed  CAS  Google Scholar 

  • Raghukumar S (2002) Ecology of the marine protists, the Labyrinthulomycetes (thraustochytrids and labyrinthulids). Eur J Protistol 38:127–145

    Article  Google Scholar 

  • Raghukumar S (2008) Thraustochytrid marine protists: production of PUFAs and other emerging technologies. Mar Biotechnol 10(6):631–640

    Article  PubMed  CAS  Google Scholar 

  • Raghukumar S, Balasubramanian R (1991) Occurrence of thraustochytrids fungi in coral and coral mucus. Indian J Mar Sci 20:176–181

    Google Scholar 

  • Raghukumar S, Gaertner A (1980) Ecology of the thraustochytrids (lower marine fungi) in the Falden Ground and other parts of the North Sea II. Veröff Inst Meeresforsh Bremerh 18:289–308

    Google Scholar 

  • Raghukumar S, Raghukumar C (1999) Thraustochytrid fungoid protists in faecal pellets of the tunicate Pagea confoederata, their tolerance to deep-sea conditions and implication in degradation processes. Mar Ecol Prog Ser 190:133–140

    Article  Google Scholar 

  • Raghukumar S, Schaumann K (1993) An epifluorescence microscope method for direct detection of and enumeration of the fungilike marine protists: the thraustochytrids. Limnol Oceanogr 38(1):182–187

    Article  Google Scholar 

  • Raghukumar S, Sharma S, Raghukumar C, Sathe-Pathak V (1994) Thraustochytrid and fungal component of marine detritus. IV. Laboratory studies on decomposition of the leaves of the mangrove Rhizophora apiculata Blume. J Exp Mar Biol Ecol 183:113–131

    Article  Google Scholar 

  • Raghukumar S, Sathe-Pathak V, Sharma S, Raghukumar C (1995) Thraustochytrid and fungal component of marine detritus. III. Field studies on decomposition of the mangrove Rhizophora apiculata. Aquat Microb Ecol 9:117–125

    Article  Google Scholar 

  • Raghukumar S, Ramaiah N, Raghukumar C (2001) Dynamics of thraustochytrid protists in the water column of the Arabian Sea. Aquat Microb Ecol 24:175–186

    Article  Google Scholar 

  • Santangelo G, Bongiorni L, Pignataro L (2000) Abundance of thraustochytrids and ciliated protozoans in a Mediterranean sandy shore determined by an improved, direct method. Aquat Microb Ecol 23:55–61

    Article  Google Scholar 

  • Sathe-Pathak V, Raghukumar S, Raghukumar C, Sharma S (1993) Thraustochytrid and fungal component of marine detritus I-Field studies of decomposition of the brown algae Sargassium cinereum. Ind J Mar Sci 22:159–169

    CAS  Google Scholar 

  • Sharma S, Raghukumar C, Raghukumar S, Sathe-Pathak V, Chandramohan D (1994) Thraustochytrid and fungal components of marine detritus. IV. Laboratory studies on decomposition of the brown alga Sargassium cinereum. J Exp Mar Biol Ecol 175:217–242

    Article  Google Scholar 

  • Sherr EB, Caron DA, Sherr BF (1993) Staining of heterotrophic protists for visualization via epifluorescence microscopy. In: Kemp PF, Sherr BF, Sherr EB, Cole JJ (eds) Aquatic microbial ecology. Lewis Publishers, Boca Raton

    Google Scholar 

  • Sigee DC (2005) Freshwater microbiology. Wiley, Chichester, England

    Google Scholar 

  • Sime-Ngando T, Colombet J (2009) Virus et prophages dans les écosystèmes aquatiques. Can J Microbiol 55:95–109

    Article  PubMed  CAS  Google Scholar 

  • Skovhus TL, Ramsing NB, Holmstro C, Kjelleberg S, Dahllo I (2004) Real-time quantitative PCR for assessment of abundance of Pseudoalteromonas species in marine samples. Appl Environ Microbiol 70:2373–2382

    Article  PubMed  CAS  Google Scholar 

  • Starink M, Bar-Gilissen MJ, Bak RPM, Cappenberg TE (1994) Quantitative centrifugation to extract benthic protozoa from freshwater sediments. Appl Environ Microbiol 60:167–173

    PubMed  CAS  Google Scholar 

  • Stoecker DK, Gustafson DE (2003) Cell-surface proteolytic activity of photosynthetic dinoflagellates. Aquat Microb Ecol 30:175–183

    Article  Google Scholar 

  • Sumathi JC, Raghukumar C (2009) Anaerobic denitrification in fungi from the coastal marine sediments off Goa, India. Mycol Res 113:100–109

    Article  Google Scholar 

  • Takai K, Horikoshi K (2000) Rapid detection and quantification of members of archaeal community by quantitative PCR using fluorogenic probes. Appl Environ Microbiol 66(11):5066–5072

    Article  PubMed  CAS  Google Scholar 

  • Takao Y, Tomaru Y, Nagasaki K, Sasakura Y, Yokoama R, Honda D (2007) Fluorescence in situ hybridization using reformatted targeted probe for specific detection of thraustochytrids (Labyrinthulomycetes). Plank Benthos Res 2(2):91–97

    Article  Google Scholar 

  • Tang KW, Taal M (2005) Trophic modification of food quality by heterotrophic protists: species-specific effects on copepod egg production and egg hatching. J Exp Mar Biol Ecol 318:85–98

    Article  Google Scholar 

  • Tao SF, Taghon GL (1997) Enumeration of protozoa and bacteria in muddy sediment. Microb Ecol 33:144–148

    Article  Google Scholar 

  • Theron J, Cloete TE (2000) Molecular techniques for determining microbial diversity and community structure in natural environment. Crit Rev Microbiol 26(1):37–57

    Article  PubMed  CAS  Google Scholar 

  • Ulken A (1981) On the role of phycomycetes in the food web of different mangrove swamps with brackish waters and waters of high salinity. Kieler Meeresforsh Sonderh 5:425–428

    Google Scholar 

  • Unagul P, Assantachai C, Phadungruengluij S, Suphantharika M, Verduyn C (2005) Properties of the docosahexaenoic acid-producer Schizochytrium mangrovei Sk-02: effects of glucose, temperature and salinity and their interaction. Bot Mar 48:387–394

    Article  CAS  Google Scholar 

  • Weinbauer MG, Rassoulzadegan F (2004) Are viruses driving microbial diversification and diversity? Environ Microbiol 6:1–11

    Article  PubMed  Google Scholar 

  • Wong MKM, Vrijmoed LLP, Au DWT (2005) Abundance of thraustochytrids on fallen decaying leaves of Kandelia candel and mangrove sediments in Futian National Nature Reserve, China. Bot Mar 48:374–378

    Article  Google Scholar 

  • Zhukova NV, Kharlamenko VI (1999) Sources of essential fatty acids in the marine microbial loop. Aquat Microb Ecol 17:153–157

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucia Bongiorni .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bongiorni, L. (2012). Thraustochytrids, a Neglected Component of Organic Matter Decomposition and Food Webs in Marine Sediments. In: Raghukumar, C. (eds) Biology of Marine Fungi. Progress in Molecular and Subcellular Biology(), vol 53. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23342-5_1

Download citation

Publish with us

Policies and ethics