Skip to main content

The Role of Mineralogy and Geochemistry in Hazard Potential Assessment of Mining Areas

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

The concept of hazard in the current interpretation of the European and national regulations is directed to local and short-term effects and its assessment is based on the distribution in space of the concentration of contaminants in abiotic and biotic compartments. We expand this concept and address its limitations by describing potential hazard with full space–time dimension, i.e., from short term to long term, and from local to regional. This most straightforward technique to quantify hazard is biogeochemical and based on the scale-specific processes of metals mobility. The short-term hazard of a contaminated area (and its future hazards in different environmental scenarios) depends on the stocks of metals, on the fluxes of outgoing elements, and on the retention time of the elements (ratio between stock and sum of fluxes). Different hazard situations can result from the relative importance of the intensity of the carrier flux and the mobilization of metals by the carrier flux. The analyses of long-term hazard can relocate a contaminated site from one hazard situation to another because of changes in the intensity of the carrier flux or/and of the mobility of metals. The mineralogical aspects controlling the stocks of metals in contaminated areas and the outgoing fluxes of metals are discussed analytically by type of source and type of flux and research directions are identified. Finally, the specific example of hazard evaluation for Romanian tailing dams is presented based on the approach introduced here.

The contributions of D. Jianu and V. Iordache to the writing of this chapter were equal.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Ackermann J, Vetterlein D, Kuehn T, Aiser K, Jahn R (2010) Minerals controlling arsenic distribution in floodplain soils. Eur J Soil Sci 61:588–598

    CAS  Google Scholar 

  • Adamo P, Dudka S, Wilson MJ, McHardy WJ (1996) Chemical and mineralogical forms of Cu and Ni in contaminated soils from the Sudbury mining and smelting region, Canada. Environ Pollut 91(1):11–19

    PubMed  CAS  Google Scholar 

  • Adamo P, Dudka S, Wilson MJ, Mchardy WJ (2002) Distribution of trace elements in soils from the Sudbury smelting area (Ontario, Canada). Water Air Soil Pollut 137:95–116

    CAS  Google Scholar 

  • Almeida MP, Andrade JS Jr, Herrmann HJ (2007) Aeolian transport of sand. Eur Phys J 22:195–200

    CAS  Google Scholar 

  • Alvarez-Valero AM, Perez Lopez R, Matos J, Capitan MA, Nieto JM, Saez R, Delgado J, Caraballo M (2008) Potential environmental impact at São Domingos mining district (Iberian Pyrite Belt, SW Iberian Peninsula): evidence from a chemical and mineralogical characterization. Environ Geol 55:1797–1809

    CAS  Google Scholar 

  • Andreotti B (2004) A two species model of aeolian sand transport. J Fluid Mech 520:319

    Google Scholar 

  • Anneser B, Pilloni G, Bayer A, Lueders T, Griebler C, Einsiedl F, Richters L (2010) High Resolution Analysis of Contaminated Aquifer Sediments and Groundwater—What Can be Learned in Terms of Natural Attenuation? Geomicrobiology Journal 27:130–142

    Google Scholar 

  • Anterrieu O, Chouteau M, Aubertin M (2010) Geophysical characterization of the large-scale internal structure of waste rock pile from a hard rock mine. Bull Eng Geol Environ 69:533–548

    CAS  Google Scholar 

  • Apitz SE, Brils J, Marcomini A, Critto A, Agostini P, Micheletti C, Pippa R, Scanferla P, Zuin S, Lanczos T, Dercova K, Kocan A, Petric J, Hucko P, Kusnir P (2006) Approaches and frameworks for managing contaminated sediments – a European perspective. In: Lanczos T, Reible D (eds) Assessment and remediation of contaminated sediments. Springer, Dordrecht, pp 5–82

    Google Scholar 

  • Archibold OW (1985) The metal content of wind-blown dust from uranium tailings in northern Saskatchewan. Water Air Soil Pollut 24:63–76

    CAS  Google Scholar 

  • Aslibekian O, Moles R (2000) Environmental contamination related to mine drainage distribution from old mine sites by waterways. In: Proceedings, 7th international mine water association congress Ustron, pp 49–58

    Google Scholar 

  • Audry S, Grosbois C, Bril H, Schäfer J, Kierczak J, Blanc G (2010) Post-depositional redistribution of trace metals in reservoir sediments of mining/smelting-impacted watershed (the Lot River, SW France). Appl Geochem 25:778–794

    CAS  Google Scholar 

  • Avila PF, Ferreira da Silva E, Salgueiro AR, Farinha JA (2008) Geochemistry and mineralogy of mill tailings impoundments from the Panasqueira Mine (Portugal): implications for the surrounding environment. Mine Water Environ 27:210–224

    CAS  Google Scholar 

  • Banwart SA, Destouni G, Malmstrom M (1998) Assessing mine water pollution: from laboratory to field scale, groundwater quality: remediation and protection. In: Proceedings of the GQ'98 Conference held at Tubingen, Germany, IAHS Publ. No. 250, pp 307–311

    Google Scholar 

  • Bennett PC, Rogers JR, Choi WJ (2001) Silicates, silicate weathering, and microbial ecology. Geomicrobiol J 18:3–19

    CAS  Google Scholar 

  • Bini E (2010) Archaeal transformation of metals in the environment. Microbiol Ecol 73:1–16

    CAS  Google Scholar 

  • Bird G, Brewer PA, Macklin MG, Balteanu D, Driga B, Serban M, Zaharia S (2003) The solid state partitioning of contaminant metals and As in river channel sediments of the mining affected Tisa drainage basin, northwestern Romania and eastern Hungary. Appl Geochem 18:1583–1595

    CAS  Google Scholar 

  • Bird G, Brewer PA, Macklin MG, Serban M, Balteanu D, Driga B (2005) Heavy metal contamination in the Aries river catchment, western Romania: implications for development of the Rosia Montana gold deposit. Journal of Geochemical Exploration 86:26–48

    Google Scholar 

  • Bird G, Brewer PA, Macklin MG, Balteanu D, Serban M, Driga B, Zaharia S (2008) River system recovery following the Novat-Rosu tailings dam failure. Maramures County, Romania

    Google Scholar 

  • Bird G, Brewer PA, Macklin MG (2010) Management of the Danube drainage basin: implications of contaminant-metal dispersal for the implications of the EU Water Framework Directive. Int J River Basin Manage 8(1):63–78

    Google Scholar 

  • Bonifacio E, Falsone G, Piazza S (2010) Linking Ni and Cr concentrations to soil mineralogy: does it help to assess metal contamination when the natural background is high? J Soils Sediments. doi:10.1007/s11368-010-0244-0

  • Borgegard SO, Rydin H (1989) Utilization of waste products and inorganic fertilizer in the restoration of iron-mine tailings. J Appl Ecol 26:1083–1088

    Google Scholar 

  • Borin S, Ventura S, Tambone F, Mapelli F, Schubotz F, Brusetti L, Scaglia B, Acqui LPD, Solheim B, Turicchia S, Marasco R, Hinrichs KU, Baldi F, Adani F, Daffonchio D (2010) Rock weathering creates oases of life in a high arctic desert. Environ Microbiol 12(2):293–303

    PubMed  CAS  Google Scholar 

  • Bormann BT, Wang D, Bormann FH, Benoit G, April R, Snyder MC (1998) Rapid, plant induced weathering in an aggrading experimental ecosystem. Biogeochemistry 43:129–155

    CAS  Google Scholar 

  • Bradshaw AD, Chadwick MJ (1980) The restoration of land: the ecology and reclamation of derelict and degraded land. University of California Press, Berkeley, Los Angeles

    Google Scholar 

  • Broadhurst JK, Petrie JG, von Blottnitz H (2007) Understanding element distribution during primary metal production. Trans Inst Min Metall 116(1):1–16

    CAS  Google Scholar 

  • Byrne P, Reid I, Wood PJ (2009) Short-term fluctuations in heavy metal concentrations during flood events through abandoned metal mines, with implications for aquatic ecology and mine water treatment. In: Abstracts of the international mine water conference, 19th–23rd October, Pretoria, South Africa, pp 124–129

    Google Scholar 

  • Byrne P, Reid I, Wood PJ (2010) Sediment geochemistry of streams draining abandoned lead/zinc mines in central Wales: the Afon Twymyn. J Soil Sediments 10:683–697

    CAS  Google Scholar 

  • Cabala J, Teper L (2007) Metalliferous constituents of rhizosphere soils contaminated by Zn-Pb mining in Southern Poland. Water Air Soil Pollut 178:351–362

    CAS  Google Scholar 

  • Calvaruso C, Turpault MP, Klett P (2006) Root associated bacteria contribute to mineral weathering and to mineral nutrition in trees: a budgeting analysis. Appl Environ Microb 72(2):1258–1266

    CAS  Google Scholar 

  • Campbell DL, Fitterman DV (2000) Geoelectrical methods for investigating mine dumps. ICARD 2000. In: Proceedings from the fifth international conference on acid rock drainage, pp 1513–1523

    Google Scholar 

  • Campbell DL, Horton RJ, Bisdorf RJ, Fey DL, Powers MH, Fitterman DV (1999) Some geophysical methods for tailings/mine waste work, tailing and mine waste ’99. In: Proceedings of the sixth international conference, Fort Collins, Colorado, January 24–27, 1999, Rotterdam, AA Balkema, pp 35–43

    Google Scholar 

  • Cappuyns V, Swennen R (2004) Secondary mobilization of heavy metals in overbank sediments. J Environ Monit 6:434–440

    PubMed  CAS  Google Scholar 

  • Cappuyns V, Swennen R (2007) Classification of alluvial soils according to their potential environmental risk: a case study for Belgian cathments. J Environ Monit 9:319–328

    PubMed  CAS  Google Scholar 

  • Carlon C, Griove S, Agostini P, Critto A, Marcomini A (2004) The role of multi-criteria decision analysis in a decision support system for rehabilitation of contaminated sites (the DESYRE software). In: Pahl-Wostl C, Schmidt S, Rizzoli AE, Jakeman AJ (eds) Complexity of the integrated resources management, Transactions of the 2nd Biennial Metting of the International Modelling and Software Society. iEMSs, Manno, Switzeland. ISBN 88-900787-1-5

    Google Scholar 

  • Carlon C, Pizzol L, Critto A, Marcomini A (2008) A spatial risk assessment methodology to support the remediation of contaminated land. Environ Int 34:397–411

    PubMed  Google Scholar 

  • Carson JK, Rooney D, Gleeson DB, Clipson N (2007) Altering the mineral composition of soil causes a shift in microbial community structure. Microbiol Ecol 61:414–423

    CAS  Google Scholar 

  • Carson JK, Campbell L, Rooney D, Clipson N, Gleeson DB (2009) Minerals in soil selected distinct bacterial communities in their microhabitats. Microbiol Ecol 67:381–388

    CAS  Google Scholar 

  • Chen W, Fryrear DW (2001) Aerodynamic and geometric diameters of airborne particles. J Sediment Res 71:365–371

    Google Scholar 

  • Chon H-S, Ohandja D-G, Voulvoulis N (2010) Implementation of E.U. Water Framework Directive: source assessment of metallic substances at catchment levels. J Environ Monit 12:36–47

    PubMed  CAS  Google Scholar 

  • Chow JC, Watson JG (1998) Guideline on speciated particulate monitoring. Prepared for U.S. EPA. Desert Research Institute, Reno

    Google Scholar 

  • Ciszewski D (2003) Heavy metals in vertical profiles on the middle Odra River overbank sediments: evidence for pollution changes. Water Air Soil Pollut 143:81–98

    CAS  Google Scholar 

  • Coulthard TJ, Macklin MG (2003) Modeling long-term contamination in river systems from historical metal mining. Geology 31:451–454

    CAS  Google Scholar 

  • Cutting RS, Coker VS, Fellowes JW, Lloyd HR, Vaughan DJ (2009) Mineralogial and morphological constraints on the reduction of Fe(III) minerals by Geobacter sulfurreducens. Geochim Cosmochim Acta 73:4004–4022

    CAS  Google Scholar 

  • D’Amore JJ, Al-Abed SR, Scheckel KG, Ryan JA (2005) Methods for speciation of metals in soils: a review. J Environ Qual 34:1707–1745

    PubMed  Google Scholar 

  • Dahlin CL, Williamson CA, Collins WK, Dahlin DC (2002a) Part III-Heavy metals: can standard sequential extraction determinations effectively define heavy metal species in superfund site soils? Contam Soils 7:87–114

    CAS  Google Scholar 

  • Dahlin CL, Williamson CA, Collins WK, Dahlin DC (2002b) Sequential extraction versus comprehensive characterization of heavy metal species in brownfield soils. Environ Forensic 3(2):191–201

    CAS  Google Scholar 

  • Davis A, Ruby MV, Bloom M, Schoof R, Freeman G, Bergstrom PD (1996) Mineralogic constraints on the bioavailability of arsenic in smelter-impacted soils. Environ Sci Technol 30(2):392–299

    CAS  Google Scholar 

  • Day G, Dietrich WE, Rowland JC, Marshall A (2008) The depositional web on the floodplain of the Fly River, Papua New Guinea. J Geophys Res 113(F01S02):1–19

    Google Scholar 

  • DEFRA (2002) Contaminants in soil: collation of toxicological data and intake values for humans. CLR9. Department for the Environment, Food and Rural Affairs and the Environment Agency, Bristol, UK

    Google Scholar 

  • Dennis IA, Coulthard TJ, Brewer P, Macklin MG (2009) The role of floodplains in attenuating contaminated sediment fluxes in formerly mined drainage basins. Earth Surf Process Landforms 34:453–466

    CAS  Google Scholar 

  • Desenfant F, Petrovsky E, Rochette P (2004) Magnetic signature of industrial pollution of stream sediments and correlation with heavy metals: case study from South France. Water Air Soil Pollut 152:297–312

    CAS  Google Scholar 

  • Diaby N, Dold B, Pfeifer GR, Hollinger C, Johnson DB, Hallberg KB (2006) Microbial communities in a porphyry copper tailings impoundment and their impact on the geochemical dynamics of the mine waste. Environ Microbiol. doi:10.1111/j.1462-2920.2006.01138.x

  • Dold B, Fontbote L (2001) Element cycling and secondary mineralogy in porphyry copper tailings as a function of climate, primary mineralogy, and mineral processing. J Geochem Explor 74:3–55

    CAS  Google Scholar 

  • Dong H (2010) Mineral-microbe interactions: a review. Front Earth Sci China 4(2):127–147

    CAS  Google Scholar 

  • Dopson M, Lövgren L, Boström D (2009) Silicate mineral dissolution in the presence of acidophilic microorganisms: implications for heap bioleachining. Hydrometallurgy 96:288–293

    CAS  Google Scholar 

  • Drahota P, Filippi M (2009) Secondary arsenic minerals in the environment: a review. Environ Int 35:1243–1255

    PubMed  CAS  Google Scholar 

  • Drahota P, Mihaljevič M, Grygan T, Rohovec J, Pertold Z (2010) Seasonal variations of Zn, Cu, As and Mo in arsenic-rich stream at the Mokrsko gold deposit, Czech Republic. Environ Earth Sci. doi:10.1007/s12665-010-0538-y

  • Du Laing G, Rinklebe J, Vandecasteele B, Meers E, Tack FMG (2009) Trace metal behavior in estuarine and riverine floodplain soils and sediments: a review. Sci Total Environ 407:3972–3985

    PubMed  Google Scholar 

  • Ettler V, Johan Z, Baronnet A, Jankovsky F, Gilles C, Mihaljevi M, Sebek O, Strnad L, Bencika P (2005) Mineralogy of air-pollution-control residues from a secondary lead smelter: environmental implications. Environ Sci Technol 39(23):9309–9316

    PubMed  CAS  Google Scholar 

  • Ettler V, Mihaljevič M, Komarek M (2004) ICP-MS measurements of lead isotopic ratios in soils heavily contaminated by lead smelting: tracing the sources of pollution. Anal Bioanal Chem 378:311–317

    PubMed  CAS  Google Scholar 

  • Ettler V, Mihaljevic M, Sebek O, Molek M, Grygar T, Zeman J (2006) Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Prıbram, Czech Republic. Environ Pollut 142:409–417

    PubMed  CAS  Google Scholar 

  • Farcasanu I, Matache M, Neagoe A, Iordache V (2012) Hyperaccumulation: a key to heavy metal bioremediation. In: Kothe E, Varma A (eds) Bio-geo-interactions in contaminated soils. Springer, Berlin, Heidelberg

    Google Scholar 

  • Farkas IM, Weiszburg TG, Pekker P, Kuzmann E (2009) A half-century of environmental mineral formation on a pyrite-bearing waste dump in the Mátra Mountains, Hungary. Can Mineral 47:509–524

    CAS  Google Scholar 

  • Faure G, Mensing TM (2005) Isotopes – principles and applications, 3rd edn. Wiley, Hoboken, NJ

    Google Scholar 

  • Frau F, Ardau C, Fanfari L (2009) Environmental geochemistry and mineralogy of lead at the old mine area of Caccu Locci (South-East Sardinia, Italy). J Geochem Explor 100:105–115

    CAS  Google Scholar 

  • Gadd GM (2007) Geomycology: biogeochemical transformations of rocks, minerals, metals and radionuclides by fungi, bioweathering and bioremediation. Mycol Res 3:3–49

    Google Scholar 

  • Gadd GM (2010) Metals, minerals and microbes: geomicrobiology and bioremediation. Microbiology 156:609–643

    PubMed  CAS  Google Scholar 

  • Gallart F, Benito G, Martin-Vide JP, Benito A, PRio JM, Regues D (1999) Fluvial geomorphology and hydrology in the dispersal and fate of pyrite mud particles released by the Aznalcollar mine tailings spill. Sci Total Environ 242:13–26

    CAS  Google Scholar 

  • Gandy CJ, Younger PL (2007) An object-oriented particle tracking code for pyrite oxidation and pollutant transport in mine spoil heaps. J Hydroinform 9(4):293–304

    Google Scholar 

  • Garrels RM, Christ CL (1965) Solution, minerals and equilibria. Harper & Row, New York

    Google Scholar 

  • Gay JR, Korre A (2006) A spatially-evaluated methodology for assessing risk to a population from contaminated land. Environ Pollut 142:227–234

    PubMed  CAS  Google Scholar 

  • Gay RJ, Korre A (2009) Accounting for pH heterogeneity and variability in modeling human health risks from cadmium in contaminated land. Sci Total Environ 407:4231–4237

    PubMed  CAS  Google Scholar 

  • Gee C, Ramsey MH, Thornton I (1997) Mineralogy and weathering processes in historical smelting slags and their effect on the mobilization of lead. J Geochem Explor 58(2–3):249–257

    CAS  Google Scholar 

  • Gleeson D, McDermott F, Clipson N (2005a) Structural diversity of bacterial communities in a heavy metal mineralized granite outcrop. Environ Microbiol. doi:doi:10.1111/j.1462-2920.2005.00903.x

  • Gleeson DB, Clipson N, Melville K, Gadd GM, McDermott FP (2005b) Characterization of fungal community structure on a weathered pegmatitic granite. Microb Ecol 0:1–9

    Google Scholar 

  • Gleyzes C, Tellier S, Astruc M (2002) Fractionation studies of trace elements in contaminated soils and sediments: a review of sequential extraction procedures. Trends Anal Chem 21:451–467

    CAS  Google Scholar 

  • Gommeaux M, Barakat M,Montagnac G,Christen R,Francois Guyot F,Heulin T (2010) Mineral and Bacterial Diversities of Desert Sand Grains from South-East Morocco, Geomicrobiology Journal 27:76–92

    Google Scholar 

  • Gonzalez-Fernandez O, Jurado-Roldan AM, Queralt I (2010) Geochemical and mineralogical features of overbank and stream sediments of the Beal Wadi (Cartagena-La Union Mining District, SE Spain): relation to former lead-zinc mining activities and its environmental risk. Water Air Soil Pollut. doi:10.1007/s11270-010-0458-1

  • Green F, Bohannan BJM (2006) Spatial scaling of microbial biodiversity. Trends Ecol Evol 21(9):501–508

    PubMed  Google Scholar 

  • Green JL, Holmes AJ, Westoby M, Oliver I, Briscoe D, Dangerfield M, Gillings M, Beattie AJ (2004) Spatial scaling of microbial eukaryote diversity. Nature 432:747–751

    PubMed  CAS  Google Scholar 

  • Gregurek D, Melcher F, Pavlov VA, Reimann C, Stumpfl EF (1999) Mineralogy and mineral chemistry of snow filter residues in the vicinity of the nickel-copper processing industry, Kola Peninsula, NW Russia. Miner Petrol 65:87–111

    CAS  Google Scholar 

  • Gromet LP, Haskin LA, Orotev RL, Dymek RF (1984) The “North American shale composite”: its compilation, major and trace element characteristics. Geochim Cosmochim Acta 48(12):2469–2482

    CAS  Google Scholar 

  • Hall GEM, Vaive JE, Beer R, Hoashi M (1996) Selective leaches revisited, with emphasis on the amorphous Fe oxyhydroxide phase extraction. J Geochem Explor 56:59–78

    CAS  Google Scholar 

  • Hamilton EI (2000) Environmental variables in a holistic evaluation of land contaminated by historic mine wastes: a study of multi-element mine wastes in West Devon, England using arsenic as an element of potential concern to human health. Sci Total Environ 249:171–221

    PubMed  CAS  Google Scholar 

  • Hammarstrom JM, Seal RR II, Meier AL, Kornfeld JM (2005) Secondary sulfate minerals associated with acid drainage in the eastern US: recycling of metals and acidity in surficial environments. Chem Geol 215:407–431

    CAS  Google Scholar 

  • Hanesch M, Scholger R (2002) Mapping of heavy metal loadings in soil by means of magnetic susceptibility measurements. Environ Geol 42:857–870

    CAS  Google Scholar 

  • Hansen Y, Broadhurst JL, Petrie JG (2008) Modelling leachate generation and mobility from copper sulphide tailings – an integrated approach to impact assessment. Miner Eng 21:288–301

    CAS  Google Scholar 

  • Hillier S, Suzuki K, Cotte-Howells J (2001) Quantitative determination of cerussite (lead carbonate) by X-ray powder diffraction and inferences for lead speciation and transport in stream sediments from a former lead mining area in Scotland. Appl Geochem 16(6):597–608

    CAS  Google Scholar 

  • Hochella MF Jr, Moore JN, Putnis CV, Putnis A, Kasama T, Eberl DD (2005) Direct observation of heavy metal-mineral association from the Clark Fork River Superfund Complex: implications for metal transport and bioavailability. Geochim Cosmochim Acta 69(7):1651–1663

    CAS  Google Scholar 

  • Hofmann T, Schuwirth N (2008) Zn and Pb release of sphalerite (ZnS)-bearing mine waste tailings. J Soils Sediments 8:433–441

    CAS  Google Scholar 

  • Hudson-Edwards KA, Macklin MG, Curtin CH, Vaughan DJ (1996) Processes of formation and distribution of Pb-ZN-, Cd-, and Cu-bearing minerals in the Tyne Basin, Northeast England: implications for metal-contaminated river systems. Environ Sci Technol 30L:72–80

    Google Scholar 

  • Hudson-Edwards KA, Macklin MG, Curtin CH, Vaughan DJ (1998) Chemical remobilization of contaminant metals within floodplain sediments in an incising river system: implications for dating and chemostratigraphy. Earth Surf Process Landforms 23:671–684

    CAS  Google Scholar 

  • Hudson-Edwards KA (2003) Sources, mineralogy, chemistry and fate of heavy metal-bearing particles in mining-affected river systems. Mineral Mag 67(2):205–217

    CAS  Google Scholar 

  • Hunt CP, Moskowitz BM, Banerjee SK (1995) Magnetic properties of rocks and minerals, rock physics and phase relation – a handbook of physical Constants. American Geophysical Union, ISBN 0-87590-853-5, pp 189–203

    Google Scholar 

  • Hutchens E, Gleeson D, McDermott F, Caso-Luengo RM, Clipson N (2010) Meter-scale diversity of microbial communities on a wearhered pegmatite granite outcrop in the Wicklow Mountains, Ireland; Evidence for mineral induced selection? Geomicrobiol J 27(1):1–14

    CAS  Google Scholar 

  • Iacob C, Orza R (2008) Integrated interpretation of geophysical data on metalliferous mining waste deposits. In: 14th european meeting of environmental and engineering geophysics, Krakow, Poland, Extended Abstracts, B02

    Google Scholar 

  • Iacob C, Orza R, Jianu D (2009) Anomalous geo-magnetic effect of acid producing reactions in mine wastes. In: 71st EAGE conference & exhibition, Amsterdam, The Netherlands, Extended Abstracts, R011

    Google Scholar 

  • Iacob C (2011) Geoelectric signatures of tailing ponds. In: 73rd EAGE conference and exhibition, Vienna, Austria, Extended Abstracts, P 187

    Google Scholar 

  • Iglesia R, Castro D, Ginocchio R, van der Lelie D, González B (2006) Factors influencing the composition of bacterial communities found at abandoned copper-tailings dumps. J Appl Microbiol 100:537–544

    PubMed  Google Scholar 

  • Iordache V (2009) Ecotoxicologia metalelor grele in lunca Dunarii. Ars Docendi, Bucharest

    Google Scholar 

  • Iordache V, Scradeanu D, Bodescu F, Jianu D, Petrescu L, Neagoe A (2010) Space-time scales of the risk associated to contaminated sites: scientific foundation vs. regulatory framework. In: International conference on environmental legislation, safety engineering and disaster management, Cluj-Napoca, Romania, Book of Abstracts: 19

    Google Scholar 

  • Iordache V, Lăcătusu R, Scrădeanu D, Onete M, Jianu D, Bodescu F, Neagoe A, Purice D, Cobzaru I (2012) Contributions to the theoretical foundations of integrated modeling in biogeochemistry and their application in contaminated areas. In: Kothe E, Varma A (eds) Bio-geo interactions in contaminated soils. Springer, Berlin, Heidelberg

    Google Scholar 

  • Isaure MP, Sarret G, Harada E, Choi YE, Marcus MA, Fakra SC, Geoffroy N, Pairis S, Susini J, Clemens S, Manceau A (2010) Calcium promotes cadmium elimination as variate grains by tobacco trichomes. Geochim Cosmichim Acta 74:5817–5834

    CAS  Google Scholar 

  • Jacquat O, Voegelin A, Villard A, Ma M, Kretzschmar R (2008) Formation of Zn-rich phyllosilicate, Zn-layered double hydroxide and hydrozincite in contaminated calcareous soils. Geochim Cosmochim Acta 72:5037–5054

    CAS  Google Scholar 

  • Jambor JL, Raudsepp M, Mountjoy K (2005) Mineralogy of permeable reactive barriers for the attenuation of subsarface contaminants, The Canadian Mineralogist 43: 2117–2140

    Google Scholar 

  • Jardine PM (2008) Influence of coupled processes on contaminant fate and transport in sub-surface environments. Adv Agron 99:1–100

    CAS  Google Scholar 

  • Jeong GY, Lee BY (2003) Secondary mineralogy and microtextures of weathered sulfide and manganoan carbonates in mine waste-rock dumps, with implications for heavy-metal fixation. Am Mineral 88(11–12):1933–1942

    CAS  Google Scholar 

  • Jordanova D, Hoffmann V, Fehr KT (2004) Mineral magnetic characterization of anthropogenetic magnetic phases in the Danube river sediments (Bulgarian part). Earth Planet Sci Lett 221:71–89

    CAS  Google Scholar 

  • Kaasalainen M, Yli-Halla M (2003) Use of sequential extraction to assess metal partitioning in soils. Environ Pollut 126:225–233

    PubMed  CAS  Google Scholar 

  • Kimball BA, Bianchi F, Walton-Day K, Runkel RL, Nannucci M, Salvadori A (2007) Quantification of changes in metal loading from storm runoff, Merse River (Tuscany, Italy). Mine Water Environ 26:209–216

    CAS  Google Scholar 

  • Kimball BA, Runkel RL (2009) Spatially delailed quantification of metal loading for decision making: metal mass loading to Americam fork and Mary Ellen Gulch, Utah. Mine Water Environ 28:274–290

    CAS  Google Scholar 

  • Kimball BA, Runkel RL, Walton-Day K (2010) An approach to quantify sources, seasonal change, and biogeochemical process affecting metal loading in streams: facilitating decisions for remediation of mine drainage. Appl Geochem 25:728–740

    CAS  Google Scholar 

  • Koeckritz T, Thoming J, Gleyzes C, Odegard KE (2001) Simplification of sequential extraction scheme to determine mobilisable heavy metal pool in soils. Acta Hydrochimica et Hydrobiologica 29(4):197–205

    CAS  Google Scholar 

  • Kovacs E, Dubbin WE, Tamas J (2006) Influence of hydrology on heavy metal speciation and mobility in a Pb-Zn mine tailing. Environ Pollut 141:310–320

    PubMed  CAS  Google Scholar 

  • Kukier U, Ishak CF, Sumner ME, Mille WR (2003) Composition and element solubility of magnetic and non-magnetic fly ash fractions. Environ Pollut 123(2):255–266

    PubMed  CAS  Google Scholar 

  • Kumpiene J, Lagerkvist A, Maurice C (2008) Stabilization of As, Cr, Cu, Pb and Zn in soil using amendments – a review. Waste Manage 28:215–225

    CAS  Google Scholar 

  • Lacatusu R, Citu G, Aston J, Lungu M, Lacatusu AR (2009) Heavy metals soil pollution state in relation to potential future mining activities in the Rosia Montana Area. Carpathian J Earth Envioron Sci 4(2):39–50

    Google Scholar 

  • Langedal M (1997) Dispersion of tailings in the Knabena–Kvina drainage basin, Norway, 2: mobility of Cu and Mo in tailings-derived fluvial sediments. J Geochem Explor 58(2–3):173–183

    CAS  Google Scholar 

  • Lattanzi P, Meneghini C, Giudici GD, Podda F (2010) Uptake of Pb by hydrozincite, Zn5(CO3)2(OH)6 – implications for remediation. J Hazard Mater 177:1138–1144

    PubMed  CAS  Google Scholar 

  • Leenaers H, Rang MC (1989) Metal dispersal in the fluvial system of the River Geul: the role of discharge, distance to the source, and floodplain geometry. Sediment Environ 184:47–57

    CAS  Google Scholar 

  • Lian B, Wang B, Pan M, Liu C, Teng HH (2008) Microbial release of potassium from K-bearing minerals by thermophilic fungus Aspergillus fumigates. Geochim Cosmochim Acta 71:87–98

    Google Scholar 

  • Lo IMC, Yang XY (1999) EDTA extraction of heavy metals from different soil fractions and synthetic soils. Water Air Soil Pollut 109:219–236

    CAS  Google Scholar 

  • Lokas E, Wachniew P, Ciszwski D, Owezarek P, Dinh Chau N (2010) Simultaneous use of trace metals, 210Pb and 137Cs in floodplain sediments of a lowland river as indicators of anthropogenic impacts. Water Air Soil Pollut 207:57–71

    CAS  Google Scholar 

  • Loredo J, Álvarez R, Ordónez A, Bros T (2008) Mineralogy and geochemistry of the Texeo Cu-Co mine site (NW Spain): screening tools for environmental assessment. Environ Geol 55:1299–1310

    CAS  Google Scholar 

  • Lottermoser BG (2007) Mine wastes: characterization, treatment and environmental impacts, 2nd edn. Springer, Berlin

    Google Scholar 

  • Lu SG, Chen YY, Shana HD, Baia SQ (2009) Mineralogy and heavy metal leachability of magnetic fractions separated from some Chinese coal fly ashes, J. Hazardous Materials 169: 246–255

    Google Scholar 

  • Macklin MG, Brewer PA, Hudson-Edwards KA, Bird G, Coulthard TJ, Dennis IA, Echler PJ, Miller JR, Turner JN (2006) A geomorphological approach to the management of rivers contaminated by metal mining. Geomorphology 79:423–447

    Google Scholar 

  • Mailloux BJ, Alexandrova E, Keimowitz AR, Wovkulich K, Freyer GA, Herron M, Stolz JF, Kenna TC, Pichler T, Polizzotto ML, Dong H, Bishop M, Knappett PSK (2009) Microbial mineral wathering for nutrient acquisition releases arsenic. Appl Environ Microbiol 75(8):2558–2565

    PubMed  CAS  Google Scholar 

  • Manceau A, Lanson B, Schlegel ML, Harge JC, Musso M, Eybert-Berard L, Hazzemann JL, Chateigner D, Lamble GM (2000) Quantitative Zn speciation in smelter-contaminated soils by exafs spectroscopy. Am J Sci 300:289–343

    CAS  Google Scholar 

  • Mara S (2010) NATECH events related to tailings from mining industry in Romania. In: International conference on environmental legislation, safety engineering and disaster management, Cluj-Napoca, Romania, Book of Abstracts: 25

    Google Scholar 

  • Martin CW (2009) Recent changes in heavy metal storage in flood-plain soils of the Lahn River, Central Germany. Environ Geol 58:803–814

    CAS  Google Scholar 

  • McCarty DK, Moore JN, Marcus WA (1998) Mineralogy and trace element association in an acid mine drainage iron oxide precipitate; comparision of selective extractions. Appl Geochim 13(2):165–176

    CAS  Google Scholar 

  • McDonald JC, Liddell FDK, Gibbs GW, Eyssen GE, McDonald AD (1980) Dust exposure and mortality in chrysotile mining, 1910-75. Br J Ind Med 37:11–24

    PubMed  CAS  Google Scholar 

  • McGrath D, Zhang C, Carton OT (2004) Geostatistical analyses and hazard assessment on soil lead in Silvermines area, Ireland. Environ Pollut 127:239–248

    PubMed  CAS  Google Scholar 

  • Mendez MO, Neilson JW, Maier RM (2008) Characterization of bacterial community in an abandoned semiarid lead-zinc mine tailing site. Appl Environ Microbiol 74(12):3899–3907

    PubMed  CAS  Google Scholar 

  • Meunier L, Walker SR, Wragg J, Parsons MB, Koch I, Jamieson HE, Reimer KJ (2010) Effects of soil composition and mineralogy on the bioaccessibility of arsenic from tailings and soil in gold mine districts of Nova Scotia. Environ Sci Technol 44(7):2667–2674

    PubMed  CAS  Google Scholar 

  • Mihalík J, Tlustoš P, Szaková J (2010) The impact of an abandoned uranium mining area on the contamination of agricultural land in its surroundings. Water Air Soil Pollut. doi:10.1007/s11270-010-0518-6

  • Miller JR (1997) The role of fluvial geomorphic processes in the dispersal of heavy metals from mine sites. J Geochem Explor 58(2):101–118

    CAS  Google Scholar 

  • Modis K, Komnitsas K (2008) Dimensionality of heavy metal distribution in waste disposal sites using nonlinear dynamics. J Hazard Mater 156:285–291

    PubMed  CAS  Google Scholar 

  • Modis K, Papantonopoulos G, Komnitsas K, Papaodysseus K (2008) Mapping optimization based on sampling size in earth related and environmental phenomena. Stoch Environ Res Risk Assess 22:83–93

    Google Scholar 

  • Monna F, Poujol M, Losno R, Dominik J, Annegarn H, Coetzee H (2006) Origin of atmospheric lead in Johannesburg, South Africa. Atmos Environ 40:6554–6566

    CAS  Google Scholar 

  • Morin G, Jd O, Juillot F, Ildefonse P, Calas G, Brown GE Jr (1999) XAFS determination of the chemical from lead in smelter-contaminated soils and mine tailings: importance of adsorption processes. Am Mineral 84:420–434

    CAS  Google Scholar 

  • Murgueytio AM, Evans RG, Robert D (1980) Relationship between soil and dust lead in a lead mining area and blood lead levels. University of California Press, Berkeley, Los Angeles, 302

    Google Scholar 

  • Musslewhite CL, McInerney MJ, Dong H, Onstott TC, Green-Blum M, Swift D, Macnauughton WDC, Murray C, Chien YJ (2003) The factorial controlling microbial distribution and activity in the shallow subsurface. Geomicrobiol J 20(3):245–261

    CAS  Google Scholar 

  • Nachtegaal M, Marcus MA, Sonke JE, Vangronsveld J, Livi KLT, van Der Leilie D, Sparls DL (2005) Effects of in situ remediation on the speciation and bioavailability of zinc in a smelter contaminated soil. Geochim Cosmochim Acta 69(19):4649–4664

    CAS  Google Scholar 

  • Navarro A, Cardellach E (2009) Mobilization of Ag, heavy metals and Eu from the waste deposit of the Las Herrerias mine (Almeria, SE Spain). Environ Geol 56:1389–1404

    CAS  Google Scholar 

  • Neagoe A, Iordache V, Farcasanu IC (2012) The role of organic matter in the mobility of metals in contaminated catchments. In: Kothe E, Varma A (eds) Bio-geo-interactions in contaminated soils. Springer, Berlin, Heidelberg

    Google Scholar 

  • Neuman CM, Boulton JW, Sanderson S (2009) Wind tunnel simulation of environmental controls on fugitive dust emissions from mine tailings. Atmos Environ 43:520–529

    Google Scholar 

  • Ngiam L, Lim P (2001) Speciation patterns of heavy metals in tropical estuarine anoxic and oxidized sediments by different sequential extraction schemes. Sci Total Environ 275:53–61

    PubMed  CAS  Google Scholar 

  • Nikolic N, Kostic L, Djordjevic A, Nikolic M (2010) Phosphorus deficiency is the major limiting factor for wheat on alluvium polluted by the copper mine pyrite tailings: a black box approach. Plant Soil. doi:10.1007/s11104-010-0605-x

  • Nirel PMV, Morel FMM (1990) Pitfalls of sequential extractions. Water Res 24:1055–1056

    CAS  Google Scholar 

  • Orza R, Panea I, Iacob C (2010) Integrating seismic and resistivity surveys on mine wastes. In: 72nd EAGE conference and exhibition, Barcelona, Spain, Extended Abstracts, P514

    Google Scholar 

  • Paktunc AD (1999) Mineralogical constraints on the determination of neutralization potential and prediction of acid mine drainage. Environ Geol 39(2):103–113

    CAS  Google Scholar 

  • Panfili F, Manceau A, Sarret G, Spadini L, Kirpichtchikova T, Bert V, Laboudigue A, Marcus MA, Ahamdach N, Libert AF (2005) The effect of phytostabilization on Zn speciation in a dredged contaminated sediment using scanning electron microscopy, X-ray flourescente, EXAFS spectroscopy, and principal components analysis. Geochim Cosmichim Acta 69(9):2265–2284

    CAS  Google Scholar 

  • Pavlowsky RT (1996) Fluvial transport and long term mobility of mining-related zinc. In: Tailing and mine waste, PP 395–404, ISBN 9054105941

    Google Scholar 

  • Pearse MJ (2005) An overview of the use of chemical reagents in mineral processing. Miner Eng 18:139–149

    CAS  Google Scholar 

  • Petrovsky E, Kapi A, Jordanova N, Boruvka L (2001) Magnetic properties of alluvial soils contaminated with lead, zinc and cadmium. J Appl Geophys 48(2):127–136

    Google Scholar 

  • Piatak NM, Seal RR II, Hammarstrom JM (2004) Mineralogical and geochemical controls on the release of trece elements from slag produced by base- and precious-metal smelting at abandoned mine sites. Appl Geochem 19:1039–1064

    CAS  Google Scholar 

  • Plathe KL (2010) Nanoparticle – heavy metal associations in river sediments. Ph.D. thesis, Polytechnic Institute and State University

    Google Scholar 

  • Plumlee GS, Ziegler TL (2007) The medical geochemistry of dusts, soils, and other Earth materials, in Lollar BS (editor) Environmental Geochemistry, Elsevier, Amsterdam, pp. 263–310

    Google Scholar 

  • Poisson J, Chouteau M, Aubertin M, Campos D (2009) Geophysical experiments to image the shallow internal structure and the moisture distribution of mine waste rock pile. J Appl Geophys 67:172–192

    Google Scholar 

  • Quantin C, Becquer T, Rouiller JH, Berthelin J (2001) Oxide weathering and trace metal release by bacterial reduction in a New Caledonia Ferralsol. Biogeochemistry 53:323–340

    CAS  Google Scholar 

  • Radu IB, Iacob C (2011) Optimizing the volume calculation for tailing ponds. In: 73rd EAGE conference and exhibition, Viena, Austria, Extended Abstracts, SP79

    Google Scholar 

  • Reeder RJ, Schoonen MAA (2006) Metal speciation and its role in bioaccessibility and bioavailability. Rev Miner Geochem 64:59–113

    CAS  Google Scholar 

  • Rendell PS, Batley GE, Camerun AJ (1980) Adsorption as a control of metal concentrations in sediment extracts. Environ Sci Technol 14:314–318

    CAS  Google Scholar 

  • Riba I, DelValls TA, Forja JM, Gomez Parra A (2002) Influence of the Aznalcollar mining spill on the vertical distribution of heavy metals in sediments from Guadalquivir estuary (SW Spain). Mar Pollut Bull 44:39–47

    PubMed  CAS  Google Scholar 

  • Rodrigues SM, Pereira ME, Ferreira da Silva E, Hursthouse AS, Duarte AC (2009) A review of regulatory decisions for environmental protection: part I – challenges in the implementation of national soil policies. Environ Int 35:202–213

    PubMed  CAS  Google Scholar 

  • Romero FM, Armienta MA, Villasenor G, Gonzalez JL (2006) Mineralogical constraints on the mobility of arsenic in tailing from Zimapan, Hidalgo, Mexico. Int J Environ Pollut 26(1–3):23–40

    CAS  Google Scholar 

  • Romero FM, Prol-Ledesma RM, Canet C, Alvarez LN, Perez-Vazquez R (2010) Acid drainage at the inactive Santa Lucia mine, western Cuba: Natural attenuation of arsenic, barium and lead, and geochemical behavior of rare earth elements. Appl Geochem 25:716–727

    CAS  Google Scholar 

  • Romero FM, Villalobos M, Aguirre R, Gutierrez ME (2008) Solid-phase control on lead bioaccessibility in smelter-impacted soils. Arch Environ Contam Toxicol 55:566–575

    PubMed  CAS  Google Scholar 

  • Roussel C, Neel C, Bril H (2000) Minerals controlling arsenic and lead solubility in an abandoned gold mine tailing. Sci Total Environ 263:209–219

    PubMed  CAS  Google Scholar 

  • Saedeleer VD, Cappuyns V, Cooman W, Swennen R (2010) Influence of major elements on heavy metal composition of river sediments. Geologica Belgica 13(3):257–268

    Google Scholar 

  • Salomons W (1995) Environmental impact of metals derived from mining activities – processes, prediction, prevention. J Geochem Explor 52:5–23

    CAS  Google Scholar 

  • Sangode SJ, Vhatkar K, Patil SK, Meshram DC, Pawar NJ, Gudadhe SS, Badekar AG, Kumaravel V (2010) Magnetic susceptibilitu distribution in the soils of Pune Metropolitan Region: implications to soil magnetometry of anthropogenic loading. Curr Sci 98(4):516–528

    Google Scholar 

  • Schuwirth N, Voegelin A, Kretzschmar R, Hofmann T (2007) Vertical distribution and speciation of trace metals in weathering flotation residues of zinc/lead sulfide mine. J Environ Qual 36:61–69

    PubMed  CAS  Google Scholar 

  • Silva EF, Chaosheng Z, Serrano Pinto L, Patinha C, Reis P (2004) Hazard assessment on arsenic and lead in soils of Castromil gold mining area, Portugal. Appl Geochem 19:887–898

    Google Scholar 

  • Sivry Y, Munoz M, Sappin-Didier V, Riotte J, Denaix L, de Parseval P, Destrigneville C, Dupre B (2010) Multimetallic contamination from Zn-ore smelter: solid speciation and potential mobility in riverine floodbank soils of the upper Lot River (SW France). Eur J Miner 22:679–691

    CAS  Google Scholar 

  • Smith JL, Lee Kiyoung (2003) Soil as a source of dust and implications for human health, Academic, Adv Agron 80

    Google Scholar 

  • Smith KS, Briggs PH, Campbell DL, Castle CJ, Desborough GA, Eppinger III RG, Fitterman DV, Hageman PL, Leinz RW, Meeker GP, Stanton MR, Sutley SJ, Swayze GA, Yager DB (2000) Tools for the rapid screening and characterization of historical metal-mining waste dumps, In Proceedings of the 2000 Billings Land Reclamation Symposium, Billings, Montana, March 20–24, 2000. Bozeman, Montana State University, Reclamation Research Unit Publication No. 00-01 (CD-ROM). p. 435–442

    Google Scholar 

  • Smith KS, Campbell DL, Desborough GA, Hageman PL, Leinz RW, Stanton MR, Sutley SJ, Swayze GA, Yager DB (2002) Toolkit for the rapid screening and characterization of waste piles on abandoned mine lands. In: Searl RR II, Foley NK (eds) Geoenvironmental models of mineral deposits, U.S. Geological Survey Open-File Report 02-195, pp 55–64

    Google Scholar 

  • Sonke Je, Hoogewerff JA, van der Laan SR, Vangronsveld J (2002) A chemical and mineralogical reconstruction of Zn-smelter emissions in the Kemper region (Belgium), based on onrganic pool sediment cores. Sci Total Environ 292(1–2):101–119

    PubMed  CAS  Google Scholar 

  • Stromberg B, Banwart SA (1999) Experimental study of acidity-consuming processes in mining waste rock: some influences of mineralogy and particle size. Appl Geochim 14(1):1–16

    CAS  Google Scholar 

  • Taylor MP, Hudson-Edwards KA (2008) The dispersal and storage of sediment-associated metals in an arid river system: the Leichhardt River, Mount Isa, Queensland, Australia. Environ Pollut 152:193–204

    PubMed  CAS  Google Scholar 

  • Teper E (2009) Dust-particle migration around flotation tailings pounds: pine needles as passive samplers. Environ Monit Assess 154:383–391

    PubMed  CAS  Google Scholar 

  • Tessier A, Campbell PGX, Bisson M (1979) Sequential extraction procedure for the speciation of particulate trace metals. Anal Chem 51:844–851

    CAS  Google Scholar 

  • Tolocka MP, Lake DA, Johnston MV, Wexler AS (2004) Number concentrations of fine and ultrafine particles containing metals. Atmos Environ 38:3262–3273

    Google Scholar 

  • Tuzen M (2003) Determination of trace metals in the River Yesilirmak sediments in Tokat, Turkey using sequential extraction procedure. Microchem J 74:105–110

    CAS  Google Scholar 

  • Ure AM (1996) Single extraction schemes for soils analysis and related applications. Sci Total Environ 178:3–10

    CAS  Google Scholar 

  • Uroz S, Calvaruso C, Turpault MP, Frey-Klett P (2009) Mineral weathering by bacteria: ecology, actors and mechanisms. Trends Microbiol 17:378–387

    PubMed  CAS  Google Scholar 

  • Usero J, Gamero M, Morillo J, Gracia I (1998) Comparative study of three sequential extraction procedures for metals in marine sediments. Environ Int 24:487–497

    CAS  Google Scholar 

  • Van Damme A, Degryse F, Smolder E, Sarret G, DEwit J, Swennen R, Manceau A (2010) Zinc speciation in mining and smelter contaminated overbank sediments by EXAFS spectroscopy. Geochim Comsochim Acta 74:3707–3720

    Google Scholar 

  • Vandeberg GS, Martin CW, Pierzynski GM (2010) Spatial distribution of trace elements in floodplain alluvium of the upper Blackfood River, Montana. Environ Earth Sci. doi:10.1007/s12665-010-0637-9

  • Vaněk A, Ettler V, Grygar T, Boruvka L, Šebek O, Brabek O (2008) Combined chemical and mineralogical evidence for heavy metal binding in mining- and smelting-affected alluvial soils. Pedosphere 18(4):464–478

    Google Scholar 

  • Vega FA, Covelo EF, Andrade ML, Marcel P (2004) Relationships between metals content and soil properties in minesoils. Anal Chim Acta 524:141–150

    CAS  Google Scholar 

  • Viaud V, Merot P, Baurdty J (2004) Hydrochemical buffer assessment in agricultural landscapes: from local to catchment scale. Environ Manage 34(4):559–573

    PubMed  Google Scholar 

  • Vitkova M, Ettler V, Johan Z, Kribek B, Sebek O, Mihaljevic M (2010) Primary and secondary phases in copper-cobalt smelting slags from the Copperbelt Province, Zambia. Mineral Mag 74(4):581–600

    CAS  Google Scholar 

  • Vojtěch E, Mihaljevič M, Šebek O, Molek M, Grygar T, Zemen J (2006) Geochemical and Pb isotopic evidence for sources and dispersal of metal contamination in stream sediments from the mining and smelting district of Příbram, Czech Republic. Environ Pollut 142:409–417

    Google Scholar 

  • Yang Y, Li S, Bi X, Wu P, Liu T, Li F, Liu C (2010) Lead, Zn, and Cd in slags, stream sediments, and soils in an abandonated Zn smelting region, southwest of China, And Pb and S isotopes as source tracers. J Soils Sediments. doi:10.1007/s11368-010-0253-z

  • Zak K, Rohovec J, Navratil T (2009) Fluxes of heavy metals from a highly polluted watershed during flood events: a case study of the Litavka River, Czech Republic. Water Air Soil Pollut 203:343–358

    CAS  Google Scholar 

  • Zhang J, Ngothai Y, Weng W, Zhang Y, Liang W, Zhao J, Mei Y, Xie M, Jia Y, Ma H, Liu P, Gao F, Wang H (2009) A literature survey on synthetic polymetic reagents used in sulfide minerals flotation. In: Proceedings: 8th world congress of chemical engineering, Montréal, Québec, Canada, August 23–27

    Google Scholar 

  • Zhao LYL, Schulin R, Nowack B (2007) The effects of plants on the mobilization of Cu and Zn in soil columns. Environ Sci Technol 41:2770–2775

    PubMed  CAS  Google Scholar 

  • Zhu C (2009) Geochemical modeling of reaction paths and geochemical reaction networks. Rev Miner Geochem 70:533–569

    CAS  Google Scholar 

  • Zijlstra JJP, Dessi R, Peretti R, Zucca A (2010) Treatment of percolate from metal sulfide mine tailings with a permeable reactive barrier of transformed red mud. Water Environ Res 82(4):319–327

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was done in the Romanian Consortium for the Biogeochemistry of Trace Elements with financing from National Center for the Management of Projects (CNMP) by projects 31012/2007 FITORISC and 31043/2007 PECOTOX, from National University Research Council (CNCSIS) by project 291/2007 MECOTER, and in the international consortium of the project UMBRELLA, FP7-ENV-2008-1 no. 226870. We thank to the anonymous reviewers for their criticism, which improved the quality of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. Jianu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Jianu, D. et al. (2012). The Role of Mineralogy and Geochemistry in Hazard Potential Assessment of Mining Areas. In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_3

Download citation

Publish with us

Policies and ethics