Skip to main content

Mycorrhizal-Based Phytostabilization of Zn–Pb Tailings: Lessons from the Trzebionka Mining Works (Southern Poland)

  • Chapter
  • First Online:

Part of the book series: Soil Biology ((SOILBIOL,volume 31))

Abstract

The chapter summarizes the research on the role of mycorrhiza in phytostabilization of heavy-metal-rich tailings from the ZG Trzebionka (southern Poland) industrial sites. The deposited substratum is difficult to phytoremediate. For example, plants conventionally introduced in such places disappear relatively soon, while those appearing during natural succession replace them. Properly developed mycorrhizal symbiosis enhances the survival of plants in such metal-rich areas by improving both nutrient acquisition and water relations. Moreover, mycorrhizal fungi were also found to play an important role in heavy metal detoxification and the establishment of vegetation. Certain fungal strains isolated from old zinc wastes also decrease heavy metal uptake by plants which grow on metal-rich substrates, thus limiting the risk of increasing the levels of these elements into the food chain. Mycorrhizal fungi isolated from the area were shown to be more effective in plant growth enhancement than those from nonpolluted area. Therefore, the effectiveness of the bioremediation techniques depends on the appropriate selection of both the plant and the fungal partners.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Adjoud D, Plenchette C, Halli-Hargas R, Lapeyrie F (1996) Response of 11 eucalyptus species to inoculation with three arbuscular mycorrhizal fungi. Mycorrhiza 6:129–135

    Article  Google Scholar 

  • Ahsan N, Lee DG, Lee SH, Kang KY, Lee JJ, Kim PJ, Yoon HS, Kim JS, Lee BH (2007) Excess copper induced physiological and proteomic changes in germinating rice seeds. Chemosphere 67:1182–93

    Article  PubMed  CAS  Google Scholar 

  • Barea JM, Werner D, Azcon-Guilar C, Azcon R (2005) Interactions of Arbuscular Mycorrhiza and Nitrogen-Fixing Symbiosis in Sustainable Agriculture. In: Werner D, Newton W (eds) Nitrogen fixation in agriculture, forestry, ecology, and the environment. nitrogen fixation: origins, applications, and research progress, vol 4, pp 199–222

    Google Scholar 

  • Broadley MR, Bowen HC, Cotterill HL, Hammond JP, Meacham MC, Mead A, White PJ (2003) Variation in the shoot calcium concentration of angiosperms. J Exp Bot 54:1431–1446

    Article  PubMed  CAS  Google Scholar 

  • Buwalda JG, Goh KM (1982) Host fungus competition for carbon as a cause of growth depression in vesicular-arbuscular mycorrhizal ryegrass. Soil Biol Biochem 14:103–106

    Article  CAS  Google Scholar 

  • Cardinale M, Brusetti L, Lanza A, Orlando S, Daffonchio D, Puglia AM, Quatrini P (2010) Rehabilitation of Mediterranean anthropogenic soils using symbiotic wild legume shrubs: plant establishment and impact on the soil bacterial community structure. Appl Soil Ecol 46:1–8

    Article  Google Scholar 

  • Carrasco JA, Armario P, Pajuelo E, Burgos A, Caviedes MA, Lopez R (2005) Isolation and characterization of symbiotically effective Rhizobium resistant to arsenic and heavy metals after the toxic spill at the Aznalcollar pyrite mine. Soil Biol Biochem 37:1131–1140

    Article  CAS  Google Scholar 

  • Cobbett C, Goldsbrough P (2002) Phytochelatins and metallothioneis: roles in heavy metal detoxification and homeostatsis. Ann Rev Plant Physiol Plant Mol Biol 53:159–182

    Article  CAS  Google Scholar 

  • Dashti N, Khanafer M, El-Nemr I, Sorkhoh N, Radwan S (2009) The potential of oil utilizing bacterial consortia associated with legume root nodules for cleaning oily soil. Chemosphere 74:1354–9

    Article  PubMed  CAS  Google Scholar 

  • Dauber J, Niechoj R, Baltruschat H, Wolters V (2008) Soil engineering ants increase grass root arbuscular mycorrhizal colonization. Biol Fert Soils 44:791–796

    Article  Google Scholar 

  • Dodd JC, Dougall TA, Clapp JP, Jeffries P (2002) The role of arbuscular mycorrhizal fungi in plant community establishment at Samphire Hoe, Kent, UK – the reclamation platform created during the building of the Channel tunnel between France and the UK. Biodivers Conserv 11:39–58

    Article  Google Scholar 

  • Ernst WHO, Verkleij JAC, Schat H (1992) Metal tolerance in plants. Acta Bot Neerl 41:229–248

    CAS  Google Scholar 

  • Foy CD, Chaney RL, White MC (1978) The physiology of metal toxicity in plants. Ann Rev Plant Physiol 29:511–566

    Article  CAS  Google Scholar 

  • Gadkar V, Driver JD, Rillig MC (2006) A novel in vitro cultivation system to produce and isolate soluble factors released from hyphae of arbuscular mycorrhizal fungi. Biotechnol Lett 28:1071–1076

    Article  PubMed  CAS  Google Scholar 

  • Gianinazzi-Pearson V, Gianinazzi S (1983) The physiology of vesicular-arbuscular mycorrhizal roots. Plant Soil 71:197–209

    Article  CAS  Google Scholar 

  • Hall JL (2002) Cellular mechanisms for heavy metal detoxification and tolerance. J Exp Bot 53:1–11

    Article  PubMed  CAS  Google Scholar 

  • Hamelin J, Fromin N, Tarnawski S, Teyssier-Cuvelle S, Aragno M (2002) nifH gene diversity in the bacterial community associated with the rhizosphere of Molinia coerulea, an oligonitrophilic perennial grass. Environ Microbiol 4:477–481

    Article  PubMed  CAS  Google Scholar 

  • Harinikumar KM, Bagyaraj DJ (1994) Potential of earthworms, ants, millipedes, and termites for dissemination of vesicular-arbuscular mycorrhizal fungi in soil. Biol Fert Soils 18:115–118

    Article  Google Scholar 

  • Harper JL (1977) Population biology of plants. Academic, London

    Google Scholar 

  • Janouskova M, Pavlikova D, Vosatka M (2006) Potential contribution of arbuscular mycorrhiza to cadmium immobilisation in soil. Chemosphere 65:1959–1965

    Article  PubMed  CAS  Google Scholar 

  • Jastrow JD, Miller RM, Lussenhop J (1998) Contributions of interacting biological mechanisms to soil aggregate atabilization in restored prairie. Soil Biol Biochem 30:905–916

    Article  CAS  Google Scholar 

  • Jeffries P, Gianinazzi S, Perotto S, Turnau K, Barea J-M (2003) The contribution of arbuscular mycorrhizal fungi in sustainable maintenance of plant health and soil fertility. Biol Fert Soils 37:1–16

    Google Scholar 

  • Jónsdóttir IS, Watson MA (1997) Extensive physiological integration: an adaptive trait in resource poor environments? In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, The Netherlands, pp 109–136

    Google Scholar 

  • Joner EJ, Leyval C (1997) Uptake of 109Cd by roots and hyphae of a Glomus mosseae/Trifolium subterraneum mycorrhiza from soil amended with high and low concentrations of cadmium. New Phytol 138:353–360

    Article  Google Scholar 

  • Jurkiewicz A, Orłowska E, Anielska T, Godzik B, Turnau K (2004) The influence of mycorrhiza and EDTA application on heavy metal uptake by different maize varieties. Acta Biol Cracov Bot 46:7–18

    Google Scholar 

  • Jurkiewicz A, Turnau K, Mesjasz-Przybylowicz J, Przybylowicz W, Godzik B (2001) Heavy metal localization in mycorrhizas of Epipactis atropurpureum (Orchidaceae) from zinc wastes in Poland. Protoplasma 218:117–124

    Article  PubMed  CAS  Google Scholar 

  • Kabata-Pendias A (2001) Trace elements in soils and plants, 3rd edn. CRC, Boca Raton, London, New York, Washington, D.C., pp. 413

    Google Scholar 

  • Kays S, Harper JL (1974) The regulation of plant and tiller density in a grass sward. J Ecol 62:97–105

    Article  Google Scholar 

  • Khan MS, Zaidi A, Wani PA, Oves M (2009) Role of plant growth promoting rhizobacteria in the remediation of metal contaminated soils. Environ Chem Lett 7:1–19

    Article  Google Scholar 

  • Kopittke PM, Dart PJ, Menzies NW (2007) Toxic effects of low concentrations of Cu on nodulation of cowpea (Vigna unguiculata). Environ Pollut 145:309–315

    Article  PubMed  CAS  Google Scholar 

  • Lafuente A, Pajuelo E, Caviedes MA, Rodriguez-Llorente ID (2010) Reduced nodulation in alfalfa induced by arsenic correlates with altered expression of early nodulins. J Plant Physiol 167:286–291

    Article  PubMed  CAS  Google Scholar 

  • Lambers H, Chapin FS III, Pons TL (2008) Plant physiological ecology, 2nd edn. Springer, New York, pp 1–604

    Book  Google Scholar 

  • Leyval C, Turnau K, Haselwandter K (1997) Effect of heavy metal pollution on mycorrhizal colonization and function: physiological, ecological and applied aspects. Mycorrhiza 7:139–153

    Article  CAS  Google Scholar 

  • Lis J, Pasieczna A (1998) Kartografia geochemiczna obszarów zurbanizowanych i uprzemysłowionych. In: Kozłowski S (ed) Ochrona litosfery. Państwowy Instytut Geolologiczny, Warszawa, pp 248–252

    Google Scholar 

  • Marshall C, Price EAC (1997) Sectoriality and its implications for physiological integration. In: de Kroon H, van Groenendael J (eds) The ecology and evolution of clonal plants. Backhuys, Leiden, The Netherlands, pp 79–107

    Google Scholar 

  • Mleczko P (2004) Mycorrhizal and saprobic macrofungi of two zinc wastes in southern Poland. Acta Biol Cracov Bot 46:25–38

    Google Scholar 

  • Newsham KK, Watkinson AR (1998) Arbuscular mycorrhizas and the population biology of grasses. In: Cheplick GP (ed) Population biology of grasses. Cambridge University Press, Cambridge, UK, pp 286–310

    Chapter  Google Scholar 

  • Nye PH, Tinker PB (1977) Solute movement in the soil-root system. Studies in ecology, vol 4. Blackwell Scientific, Oxford

    Google Scholar 

  • Orłowska E, Jurkiewicz A, Anielska T, Godzik B, Turnau K (2005) Influence of different arbuscular mycorrhizal fungal (AMF) strains on heavy metal uptake by Plantago lanceolata L. Pol Bot Stud 19:65–72

    Google Scholar 

  • Pajuelo E, Rodriguez-Llorente ID, Dary M, Palomeres AJ (2008) Toxic effects of arsenic on Sinorhizobium-Medicago sativa symbiotic interaction. Environ Pollut 154:2003–2011

    Article  Google Scholar 

  • Pielichowska M, Wierzbicka M (2004) The uptake and localization of cadmium by Biscutella laevigata – a cadmium hyperaccumulator. Acta Biol Cracov Bot 46:57–64

    Google Scholar 

  • Pierzynski GM, Sims JT, Vance GF (2000) Soil and environmental quality, 2nd edn. CRC, Boca Raton, FL

    Google Scholar 

  • Pozo M, Azcon-Aguilar C (2007) Unraveling mycorrhiza induced resistance. Curr Opin Plant Biol 10:393–398

    Article  PubMed  CAS  Google Scholar 

  • Purin S, Rillig MC (2008) Immuno-cytolocalization of glomalin in the mycelium of the arbuscular mycorrhizal fungus Glomus intraradices. Soil Biol Biochem 40:1000–1003

    Article  CAS  Google Scholar 

  • Rascio N (1977) Metal accumulation by some plants growing on zinc-mine deposits. Oikos 29:250–253

    Article  CAS  Google Scholar 

  • Rillig MC, Mummey DL (2006) Mycorrhizas and soil structure. New Phytol 171:41–53

    Article  PubMed  CAS  Google Scholar 

  • Rillig MC, Mardatin NF, Leifheit EF, Antunes PM (2010) Mycelium of arbuscular mycorrhizal fungi increases soil water repellency and is sufficient to maintain water-stable soil aggregates. Soil Biol Biochem 42:1189–1191

    Article  CAS  Google Scholar 

  • Ryszka P (2006) Mikoryza traw hałdy ZG Trzebionka. Ph.D. thesis, Faculty of Biology and Earth Sciences, Jagiellonian University, Kraków, Poland

    Google Scholar 

  • Ryszka P, Turnau K (2007) Arbuscular mycorrhiza of introduced and native grasses colonizing zinc wastes: implications for restoration practices. Plant Soil 298:219–229

    Article  CAS  Google Scholar 

  • Shaw BI, Mantle PG (1980) Host infection by Claviceps purpurea. Trans Br Mycol Soc 75:77–90

    Article  CAS  Google Scholar 

  • Smith MR, Charvat I, Jacobson RL (1998) Arbuscular mycorrhizae promote establishment of prairie species in a tallgrass prairie restoration. Can J Bot 76:1947–1954

    Google Scholar 

  • Streitwolf-Engel R, van Der Heijden MGA, Wiemken A, Sanders IR (2001) The ecological significance of arbuscular mycorrhizal fungal effects on clonal reproduction in plants. Ecology 82:2846–2859

    Article  Google Scholar 

  • Strzyszcz Z (1980) Właściwości fizyczne, fizyko-chemiczne i chemiczne odpadów poflotacyjnych rud cynku i ołowiu w aspekcie ich biologicznej rekultywacji (Physical, physical-chemical and chemical properties of wastes after flotation of zinc and lead ores with regard to their biological reclamation). Archiwum Ochrony Środowiska 3–4:19–50

    Google Scholar 

  • Strzyszcz Z (2003) Some problems of the reclamation of waste heaps of zinc and lead ore exploitation in southern Poland. Z Geol Wiss, Berlin 31:167–173

    CAS  Google Scholar 

  • Szafer W (ed) (1966) The vegetation of Poland. Pergamon, Oxford

    Google Scholar 

  • Szuwarzyński M (2000) Zakłady Górnicze “Trzebionka” S.A. 1950–2000, Przedsiębiorstwo Doradztwa Technicznego ”Kadra”, Krakow, Poland

    Google Scholar 

  • Tsimilli-Michael M, Turnau K, Ostachowicz B, Strasser RJ (2008) Effect of mycorrhiza on the photosynthetic performance of Medicago sativa L. cultivated on control and heavy rich substratum, studied in vivo with the JIP-test. COST 870 Meeting "From production to application of arbuscular mycorrhizal fungi in aqricultural systems: a multidisciplinary approach, 17–19 September 2008, Thessaloniki, Greece, pp 80–83

    Google Scholar 

  • Turnau K (1998) Heavy metal uptake and arbuscular mycorrhiza development of Euphorbia cyparissias on zinc wastes in South Poland. Acta Soc Bot Pol 67(1):105–113

    CAS  Google Scholar 

  • Turnau K, Anielska T, Ryszka P, Gawronski S, Ostachowicz B, Jurkiewicz A (2008) Establishment of arbuscular mycorrhizal plants originating from xerothermic grasslands on heavy metal rich industrial wastes – new solution for waste revegetation. Plant Soil 305:267–280

    Article  CAS  Google Scholar 

  • Turnau K, Jurkiewicz A, Lingua G, Barea JM, Gianinazzi-Pearson V (2006) Role of arbuscular mycorrhiza and associated microorganisms in phytoremediation of heavy metal-polluted sites. In: Prasad MNV, Sajwan KS, Naidu R (eds) Trace elements in the environment. Biogeochemistry, biotechnology, and bioremediation. Taylor & Francis, Boca Raton, pp 235–252

    Google Scholar 

  • Turnau K, Mesjasz-Przybylowicz J (2003) Arbuscular mycorrhiza of Berkheya coddii and other Ni-hyperaccumulating members of Asteraceae from ultramafic soils in South Africa. Mycorrhiza 13:185–190

    Article  PubMed  Google Scholar 

  • Turnau K, Ostachowicz B, Wojtczak G, Anielska T, Sobczyk Ł (2010) Metal uptake by xerothermic plants introduced into Zn-Pb industrial wastes. Plant Soil; DOI: 10.1007/s11104-010-0527-7

  • Turnau K, Ryszka P, Gianinazzi-Pearson V, van Tuinen D (2001) Identification of arbuscular mycorrhizal fungi in soils and roots of plants colonizing zinc wastes in Southern Poland. Mycorrhiza 10:169–174

    Article  CAS  Google Scholar 

  • van der Heijden MGA, Wiemken A, Sanders IR (1998) Different arbuscular mycorrhizal fungi alter coexistence and resource distribution between co-occurring plant. New Phytol 157:569–578

    Article  Google Scholar 

  • van der Heijden MGA (2002) Arbuscular mycorrhizal fungi as a determinant of plant diversity: in search for underlying mechanisms and general principles. In: van der Heijden MGA, Sanders IR (eds) Mycorrhizal ecology. Ecological studies, vol 157. Springer, Heidelberg, pp 243–265

    Google Scholar 

  • Wierzbicka M, Panufnik D (1998) The adaptation of Silene vulgaris to growth on a calamine waste heap (S. Poland). Environ Pollut 101:415–426

    Article  CAS  Google Scholar 

Download references

Acknowledgment

This chapter was written within the framework of the Project UMBRELLA (EU FP7 no 226870).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katarzyna Turnau .

Editor information

Editors and Affiliations

Appendix

Appendix

Vascular plant species recorded on ZG Trzebionka zinc wastes. Phytosiociological units (according to Szafer 1966), followed by origin on wastes, are given in parentheses: Sm/Av – Stellarietea mediae/Arrtemisietea vulgaris; QF – Querco-Fagetea; MA – Molinio-Arrhenatheretea; FB – Festuco-Brometea; KgCc – Koelerio glauce-Corynephoretea canescentis; Vc – Violetea calaminariae; C – spontaneous colonization; S – sown within restoration practices.

Amaranthaceae: Amaranthus retroflexus (Sm/Av; C); Apiaceae: Aegopodium podagraria (QF; C), Daucus carota (FB; C), Heracleum sphondylium (MA; C), Pastinaca sativa (MA; C), Peucedanum oreoselinum (FB; C), Pimpinella saxifraga (MA; C); Artemisiaceae: Artemisia campestris (FB; C), A. vulgaris (Sm/Av; C); Asteraceae: Anthemis arvensis (Sm/Av; C), Aster novi-belgii (Sm/Av; C), Bidens frondosa (Sm/Av; C), Cardus crispus (Sm/Av; C), Centaurea cyanus (Sm/Av; C), C. jacea (MA; C), Chamomilla recutita (Sm/Av; C), Cirsium arvense (Sm/Av; C), C. vulgare (Sm/Av; C), Conyza canadensis (Sm/Av; C), Crepis biennis (MA; C), Erigeron acris (KgCc; C), E. annuus (Sm/Av; C), Eupatorium cannabinum (MA; C), Gnaphalium uliginosum (Sm/Av; C), Helianthus tuberosus (Sm/Av; C), Hieracium bauhinii (FB; C), Hieracium pilosella (KgCc; C), H. piloselloides (KgCc; C), Hypocheris radicata (Sm/Av; C), Lactuca serriola (Sm/Av; C), Leontodon autumnalis (MA; C), L. hispidus (MA; C), Leucanthemum vulgare (MA; C), Matricaria maritima subsp. Inodora (Sm/Av; C), Picris hieracioides (FB; C), Rudbeckia bicolor (Sm/Av; C), R. laciniata (Sm/Av; C), Senecio jacobaea (Sm/Av; C), S. vernalis (Sm/Av; C), Solidago canadensis (Sm/Av; C), S. gigantea (Sm/Av; C), Sonchus arvensis (Sm/Av; C), S. asper (Sm/Av; C), Tanacetum vulgare (Sm/Av; C), Taraxacum officinale (MA; C), Tragopogon pratensis (MA; C), Tussilago farfara (Sm/Av; C); Boraginaceae: Echium vulgare (FB; C), Myosotis arvensis (Sm/Av; C), Myosoton aquaticum (QF; C), Symphytum officinale (MA; C), Veronica officinalis (QF; C); Brassicaceae: Armoracia rusticana (Sm/Av; C), Barbarea vulgaris (Sm/Av; C), Berteroa incana (FB; C), Cardaminopsis arenosa (KgCc; C), Lepidium campestre (Sm/Av; C), Rorippa sylvestris (Sm/Av; C), Sinapis arvensis (Sm/Av; C); Campanulaceae: Campanulla trachelium (QF; C); Caryophyllaceae: Arenaria serpyllifolia (KgCc; C), Cerastium holosteoides (Sm/Av; C), Dianthus carthusianorum (FB; C), Melandrium album (Sm/Av; C), Sclerantus perennis (Sm/Av; C), Silene vulgaris var. humillis (Vc; C), Viscaria vulgaris (Sm/Av; C); Chenopodiaceae: Chenopodium album (Sm/Av; C), C. polyspermum (Sm/Av; C); Cistaceae: Helianthemum nummularium (FB; C); Convolvulaceae: Convolvulus arvensis (Sm/Av; C), Calystegia sepium (QF; C); Crassulaceae: Sedum acre (KgCc; C), S. maximum (FB; C); Cyperaceae: Carex caryophyllea (KgCc; C), C. echinata (FB; C), C. flacca (MA; C), C. hirta (MA; C); Dipsacaceae: Dipsacus sylvestris (Sm/Av; C), Knaucia arvensis (MA; C), Scabiosa ochroleuca (FB; C); Equiseataceae: Equisetum variegatum (MA; C), E. arvense (Sm/Av; C), E. pratense (Sm/Av; C); Euphorbiaceae: Euphorbia cyparyssias (FB; C), E. esula (Sm/Av; C); Fabaceae: Anthyllis vulneraria (FB; C), Coronilla varia (FB; C), Lathyrus pratensis (MA; C), Lotus corniculatus (MA; C), Medicago falcata (FB; C), M. lupulina (MA; C), M. sativa (Sm/Av; S), Melilotus alba (Sm/Av; S), M. officinalis (Sm/Av; C), Ononis spinosa (FB; C), Trifolium arvense (FB; C), T. pratense (MA; S), T. repens (MA; S), Vicia cracca (MA; C), V. grandiflora (Sm/Av; C), V. hirsuta (FB; C), V. sativa (Sm/Av; S), V. tetrasperma (FB; C); Geraniaceae: Geranium pratense (MA; C); Hypericaceae: Hypericum perforatum (FB; C); Lamiaceae: Ajuga reptans (QF; C), Galeopsis speciosa (Sm/Av; C), Glechoma hederacea (Sm/Av; C), Mentha arvensis (Sm/Av; C), Origanum vulgare (FB; C), Stachys palustris (Sm/Av; C), Thymus pulegioides (FB; C), T. serpyllum (KgCc; C); Linaceae: Linum catharticum (FB; C); Lythraceae: Lythrum salicaria (MA; C); Onagraceae: Chamaenerion angustifolium (Sm/Av; C), Oenothera biennis (Sm/Av; C); Orchidaceae: Epipactis atrorubens (FB; C), E. helleborine (QF; C); Oxalidaceae: Oxalis dillenii (Sm/Av; C); Papaveraceae: Papaver argemone (Sm/Av; C), Papaver rhoeas (Sm/Av; C); Plantaginaceae: Plantago lanceolata (MA; C), P. major (Sm/Av; C); Plumbaginaceae: Armeria maritima subsp. elongata (KgCc; C); Poaceae: Agrostis capillaris (FB; C), A. gigantea (MA; S), Apera spica-venti (Sm/Av; C), Arrhenatherum elatius (MA; C), Avena sativa (Sm/Av; C), Avenula pubescens (FB; C), Bromus hordeaceus (Sm/Av; C), B. inermis (FB; C), Calamagrostis epigejos (FB; C), Corynephorus canescens (KgCc; C), Dactylis glomerata (MA; S), Deschampsia caespitosa (MA; C), Echinochloa crus-galli (Sm/Av; C), Elymus caninus (Sm/Av; C), E. repens (Sm/Av; C), Festuca arundinacea (MA; S), F. pratensis (MA; S), F. rubra (MA; S), F. tenuifolia (KgCc; C), F. trachyphylla (FB; C), Holcus lanatus (MA; C), Koeleria glauca (KgCc; C), Lolium multiflorum (MA; S), L. perenne (MA; S), Molinia caerulea (MA; C), Phalaris arundinacea (MA; C), Phleum pratense (MA; S), Phragmites australis (MA; C), Poa angustifolia (FB; C), P. compressa (FB; C), P. pratensis (MA; S), Setaria viridis (Sm/Av; C); Polygonaceae: Fallopia convolvulus (Sm/Av; C), Polygonum aviculare (Sm/Av; C), P. lapathifolium subsp. lapathifolium (Sm/Av; C), P. persicaria (Sm/Av; C), Rumex acetosa (MA; C), R. acetosella (KgCc; C), R. crispus (Sm/Av; C); Primulaceae: Lysimachia nummularia (QF; C), L. vulgaris (MA; C); Ranunculaceae: Consolida regalis (Sm/Av; C), Ranunculus acris (MA; C), R. repens (MA; C); Rosaceae: Achillea millefolium (MA; C), Agrimonia eupatoria (FB; C), Fragaria vesca (FB; C), Potentilla anserina (Sm/Av; C), P. argentea (FB; C), P. reptans (MA; C), Sanguisorba minor (FB; C), S. officinalis (MA; C); Rubiaceae: Galium molugo (MA; C), G. verum (MA; C); Scrophulariaceae: Chaenorhinum minus (Sm/Av; C), Linaria vulgaris (FB; C), Rhinanthus serotinus (Sm/Av; C), Scrophularia nodosa (QF; C), Verbascum lychnitis (FB; C), V. nigrum (FB; C), V. thapsus (FB; C), Euphrasia rostkoviana (FB; C); Urticaceae: Urtica dioica (QF; C); Valerianaceae: Valeriana officinalis (MA; C); Violaceae: Viola arvensis (Sm/Av; C), V. collina (FB; C), V. tricolor (Sm/Av; C).

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Turnau, K., Gawroński, S., Ryszka, P., Zook, D. (2012). Mycorrhizal-Based Phytostabilization of Zn–Pb Tailings: Lessons from the Trzebionka Mining Works (Southern Poland). In: Kothe, E., Varma, A. (eds) Bio-Geo Interactions in Metal-Contaminated Soils. Soil Biology, vol 31. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23327-2_16

Download citation

Publish with us

Policies and ethics