Performance Analysis of Wireless LANs with a Backoff Freezing Mechanism

  • Ho Young Hwang
  • Seong Joon Kim
  • Byung-Soo Kim
  • Dan Keun Sung
  • Suwon Park
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 199)


In this paper, we propose an accurate analytical model of IEEE 802.11 DCF WLANs with a backoff freezing mechanism. In order to analyze the DCF with the backoff freezing mechanism, we model the backoff process of a station with a Markov chain. The proposed Markov chain models three different types of the backoff operations: choosing a new backoff counter, freezing the backoff counter, and decrementing the backoff counter. The proposed analytical model also considers the three different types of the previous channel status: idle, busy due to a collision, and busy due to a successful transmission. Considering the backoff freezing mechanism in the proposed model affects the performance measures such as throughput. The analytical and simulation results show that the proposed analytical model is very accurate with the backoff freezing mechanism.


IEEE 802.11 wireless local area network (WLAN) distributed coordination function (DCF) 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specification. ANSI/IEEE Std 802.11, 1999 Edition (R2003) (June 2003)Google Scholar
  2. 2.
    IEEE 802.11a, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: High-Speed Physical Layer in the 5 GHz Band. IEEE Std 802.11a-1999 (December 1999)Google Scholar
  3. 3.
    IEEE 802.11g, Part 11: Wireless LAN Medium Access Control (MAC) and Physical Layer (PHY) Specifications: Further Higher Data Rate Extension in the 2.4 GHz Band. IEEE Std 802.11g-2003 (June 2003)Google Scholar
  4. 4.
    Bianchi, G.: Performance analysis of the IEEE 802.11 distributed coordination function. IEEE J. Sel. Areas Commun. 18(3), 535–547 (2000)CrossRefGoogle Scholar
  5. 5.
    Wu, H., Peng, Y., Long, K., Cheng, S., Ma, J.: Performance of reliable transport protocol over IEEE 802.11 wireless LAN: analysis and enhancement. In: Proc. IEEE INFOCOM, pp. 599–607 (June 2002)Google Scholar
  6. 6.
    Chatzimisios, P., Boucouvalas, A.C., Vitsas, V.: IEEE 802.11 packet delay - a finite retry limit analysis. In: Proc. IEEE Globecom, pp. 950–954 (December 2003)Google Scholar
  7. 7.
    Ziouva, E., Antonakopoulos, T.: CSMA/CA performance under high traffic conditions: throughput and delay analysis. Computer Communications 25(3), 313–321 (2002)CrossRefGoogle Scholar
  8. 8.
    Foh, C.H., Tantra, J.W.: Comments on IEEE 802.11 saturation throughput analysis with freezing of backoff counters. IEEE Commun. Lett. 9(2), 130–132 (2005)CrossRefGoogle Scholar
  9. 9.
    Choi, J., Yoo, J., Kim, C.: A novel performance analysis model for an IEEE 802.11 wireless LAN. IEEE Commun. Lett. 10(5), 335–337 (2006)CrossRefGoogle Scholar
  10. 10.
    Bianchi, G., Tinnirello, I.: Remarks on IEEE 802.11 DCF performance analysis. IEEE Commun. Lett. 9(8), 765–767 (2005)CrossRefGoogle Scholar
  11. 11.
    Tinnirello, I., Bianchi, G., Xiao, Y.: Refinements on IEEE 802.11 distributed coordination function modeling approaches. IEEE Transactions on Vehicular Technology 59(3), 1055–1067 (2010)CrossRefGoogle Scholar
  12. 12.
    Ma, X., Chen, X.: Saturation performance of IEEE 802.11 broadcast networks. IEEE Commun. Lett. 11(8), 686–688 (2007)CrossRefGoogle Scholar
  13. 13.
    Kim, S.J., Hwang, H.Y., Kwon, J.K., Sung, D.K.: Saturation Performance Analysis of IEEE 802.11 WLAN under the Assumption of No Consecutive Transmissions. IEICE Transactions on Communications E90-B(3), 700–703 (2007)CrossRefGoogle Scholar
  14. 14.
    Hwang, H.Y., Kim, S.J., Sung, D.K., Song, N.-O.: Performance Analysis of IEEE 802.11e EDCA with a Virtual Collision Handler. IEEE Transactions on Vehicular Technology 57(2), 1293–1297 (2008)CrossRefGoogle Scholar
  15. 15.
    Jin, H., Jung, B.C., Hwang, H.Y., Sung, D.K.: MIMO-Based Collision Mitigation Scheme in Uplink WLANs. IEEE Communications Letters 12(6), 417–419 (2008)CrossRefGoogle Scholar
  16. 16.
    Yang, J.W., Kwon, J.K., Hwang, H.Y., Sung, D.K.: Goodput Analysis of a WLAN with Hidden Nodes under a Non-Saturated Condition. IEEE Transactions on Wireless Communications 8(5), 2259–2264 (2009)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ho Young Hwang
    • 1
  • Seong Joon Kim
    • 3
  • Byung-Soo Kim
    • 4
  • Dan Keun Sung
    • 5
  • Suwon Park
    • 2
  1. 1.Dept. of Computer EngineeringKwangwoon UniversityKorea
  2. 2.Dept. of Electronics and Communications EngineeringKwangwoon UniversityKorea
  3. 3.Samsung ElectronicsKorea
  4. 4.Dept. of EECSUniversity of MichiganU.S.A.
  5. 5.Dept. of Electrical EngineeringKAISTKorea

Personalised recommendations