Skip to main content

Novel Muscarinic Receptor Mutant Mouse Models

  • Chapter
  • First Online:
Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

Muscarinic acetylcholine (ACh) receptors (mAChRs; M1–M5) regulate the activity of an extraordinarily large number of important physiological processes. During the past 10–15 years, studies with whole-body M1–M5 mAChR knockout mice have provided many new insights into the physiological and pathophysiological roles of the individual mAChR subtypes. This review will focus on the characterization of a novel generation of mAChR mutant mice, including mice in which distinct mAChR genes have been excised in a tissue- or cell type-specific fashion, various transgenic mouse lines that overexpress wild-type or different mutant M3 mAChRs in certain tissues or cells only, as well as a novel M3 mAChR knockin mouse strain deficient in agonist-induced M3 mAChR phosphorylation. Phenotypic analysis of these new animal models has greatly advanced our understanding of the physiological roles of the various mAChR subtypes and has identified potential targets for the treatment of type 2 diabetes, schizophrenia, Parkinson’s disease, drug addiction, cognitive disorders, and several other pathophysiological conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACh:

Acetylcholine

CNO:

Clozapine-N-oxide

DHPG:

((S)-3,5-dihydroxyphenylglycine

DREADD:

Designer receptor exclusively activated by designer drug

GH:

Growth hormone

GHRH:

Growth hormone-releasing hormone

GPCR:

G-protein-coupled receptor

i3 loop:

Third intracellular loop

IGF-1:

Insulin-like growth factor

KI:

Knockin

KO:

Knockout

LDP:

Long-term depression

LFP:

Local field potential

LTP:

Long-term potentiation

mAChR:

Muscarinic acetylcholine receptor

mGluR:

Metabotropic glutamate receptor

Oxo-M:

Oxotremorine M

PI:

Phosphatidylinositol

RASSL:

Receptor activated solely by synthetic ligand

SNS:

Sympathetic nervous system

T2D:

Type 2 diabetes

tTA:

tet Transactivator

WT:

Wild-type

References

  • Abramow-Newerly M, Roy AA, Nunn C, Chidiac P (2006) RGS proteins have a signalling complex: interactions between RGS proteins and GPCRs, effectors, and auxiliary proteins. Cell Signal 18:579–591

    Article  PubMed  CAS  Google Scholar 

  • Abrams P, Andersson KE, Buccafusco JJ et al (2006) Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol 148:565–578

    Article  PubMed  CAS  Google Scholar 

  • Ahren B (2000) Autonomic regulation of islet hormone secretion – implications for health and disease. Diabetologia 2000(43):393–410

    Google Scholar 

  • Ahrén B (2009) Islet G protein-coupled receptors as potential targets for treatment of type 2 diabetes. Nat Rev Drug Discov 8:369–385

    Article  PubMed  Google Scholar 

  • Alexander GM, Rogan SC, Abbas AI et al (2009) Remote control of neuronal activity in transgenic mice expressing evolved G protein-coupled receptors. Neuron 63:27–39

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE et al (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    Article  PubMed  CAS  Google Scholar 

  • Armbruster BN, Li X, Pausch MH et al (2007) Evolving the lock to fit the key to create a family of G protein-coupled receptors potently activated by an inert ligand. Proc Natl Acad Sci U S A 104:5163–5168

    Article  PubMed  Google Scholar 

  • Auerbach JM, Segal M (1996) Muscarinic receptors mediating depression and long-term potentiation in rat hippocampus. J Physiol 492(Pt 2):479–493

    PubMed  CAS  Google Scholar 

  • Baggio LL, Drucker DJ (2007) Biology of incretins: GLP-1 and GIP. Gastroenterology 132:2131–2157

    Article  PubMed  CAS  Google Scholar 

  • Bansal G, Druey KM, Xie Z (2007) R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol Ther 116:473–495

    Article  PubMed  CAS  Google Scholar 

  • Bear MF, Huber KM, Warren ST (2004) The mGluR theory of fragile X mental retardation. Trends Neurosci 27:370–377

    Article  PubMed  CAS  Google Scholar 

  • Bernard V, Normand E, Bloch B (1992) Phenotypical characterization of the rat striatal neurons expressing muscarinic receptor genes. J Neurosci 12:3591–3600

    PubMed  CAS  Google Scholar 

  • Brady AE, Jones CK, Bridges TM et al (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamine-induced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327:941–953

    Article  PubMed  CAS  Google Scholar 

  • Brown BS, Yu SP (2000) Modulation and genetic identification of the M channel. Prog Biophys Mol Biol 73:135–166

    Article  PubMed  CAS  Google Scholar 

  • Budd DC, McDonald JE, Tobin AB (2000) Phosphorylation and regulation of a Gq/11-coupled receptor by casein kinase 1a. J Biol Chem 275:19667–19675

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Birdsall NJM (1998) International Union of Pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S et al (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci U S A 105:10978–10983

    Article  PubMed  CAS  Google Scholar 

  • Conklin BR, Hsiao EC, Claeysen S et al (2008) Engineering GPCR signaling pathways with RASSLs. Nat Methods 5:673–678

    Article  PubMed  CAS  Google Scholar 

  • Del Prato S, Marchetti P, Bonadonna RC (2002) Phasic insulin release and metabolic regulation in type 2 diabetes. Diabetes 51(Suppl 1):S109–S116

    Article  PubMed  Google Scholar 

  • Di Chiara G, Morelli M, Consolo S (1994) Modulatory functions of neurotransmitters in the striatum: ACh/dopamine/NMDA interactions. Trends Neurosci 17:228–233

    Article  PubMed  Google Scholar 

  • Dong S, Rogan SC, Roth BL (2010) Directed molecular evolution of DREADDs: a generic approach to creating next-generation RASSLs. Nat Protoc 5:561–573

    Article  PubMed  CAS  Google Scholar 

  • Doyle ME, Egan JM (2007) Mechanisms of action of glucagon-like peptide 1 in the pancreas. Pharmacol Ther 113:546–593

    Article  PubMed  CAS  Google Scholar 

  • Duttaroy A, Zimliki CL, Gautam D et al (2004) Muscarinic stimulation of pancreatic insulin and glucagon release is abolished in M3 muscarinic acetylcholine receptor-deficient mice. Diabetes 53:1714–1720

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43:105–136

    Article  PubMed  CAS  Google Scholar 

  • Elefteriou F, Ahn JD, Takeda S et al (2005) Leptin regulation of bone resorption by the sympathetic nervous system and CART. Nature 434:514–520

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Porter AC, Skillman TL et al (2001) Elucidating the role of muscarinic receptors in psychosis. Life Sci 68:2605–2613

    Article  PubMed  CAS  Google Scholar 

  • Frohman LA, Kineman RD (2002) Growth hormone-releasing hormone and pituitary development, hyperplasia and tumorigenesis. Trends Endocrinol Metab 13:299–303

    Article  PubMed  CAS  Google Scholar 

  • Fu L, Patel MS, Bradley A et al (2005) The molecular clock mediates leptin-regulated bone formation. Cell 122:803–815

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Gavrilova O, Jeon J et al (2006a) Beneficial metabolic effects of M3 muscarinic acetylcholine receptor deficiency. Cell Metab 4:363–375

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Han SJ, Hamdan FF et al (2006b) A critical role for β cell M3 muscarinic acetylcholine receptors in regulating insulin release and blood glucose homeostasis in vivo. Cell Metab 3:449–461

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Jeon J, Starost MF et al (2009) Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth. Proc Natl Acad Sci U S A 106:6398–6403

    Article  PubMed  CAS  Google Scholar 

  • Gerber DJ, Sotnikova TD, Gainetdinov RR et al (2001) Hyperactivity, elevated dopaminergic transmission, and response to amphetamine in M1 muscarinic acetylcholine receptor-deficient mice. Proc Natl Acad Sci U S A 98:15312–15317

    Article  PubMed  CAS  Google Scholar 

  • Gilon P, Henquin JC (2001) Mechanisms and physiological significance of the cholinergic control of pancreatic β-cell function. Endocr Rev 22:565–604

    Article  PubMed  CAS  Google Scholar 

  • Giustina A, Veldhuis JD (1998) Pathophysiology of the neuroregulation of growth hormone secretion in experimental animals and the human. Endocr Rev 19:717–797

    Article  PubMed  CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E et al (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci U S A 96:10483–10488

    Article  PubMed  CAS  Google Scholar 

  • Guettier JM, Gautam D, Scarselli M et al (2009) A chemical-genetic approach to study G protein regulation of β cell function in vivo. Proc Natl Acad Sci U S A 106:19197–19202

    Article  PubMed  CAS  Google Scholar 

  • Hamilton SE, Loose MD, Qi M et al (1997) Disruption of the m1 receptor gene ablates muscarinic receptor-dependent M current regulation and seizure activity in mice. Proc Natl Acad Sci U S A 94:13311–13316

    Article  PubMed  CAS  Google Scholar 

  • Hollinger S, Hepler JR (2002) Cellular regulation of RGS proteins: modulators and integrators of G protein signaling. Pharmacol Rev 54:527–559

    Article  PubMed  CAS  Google Scholar 

  • Ince E, Ciliax BJ, Levey AI (1997) Differential expression of D1 and D2 dopamine and m4 muscarinic acetylcholine receptor proteins in identified striatonigral neurons. Synapse 27:357–366

    Article  PubMed  CAS  Google Scholar 

  • Iwasato T, Nomura R, Ando R et al (2004) Dorsal telencephalon-specific expression of Cre recombinase in PAC transgenic mice. Genesis 38:130–138

    Article  PubMed  CAS  Google Scholar 

  • Jeon J, Dencker D, Wörtwein G et al (2010) A subpopulation of neuronal M4 muscarinic acetylcholine receptors plays a critical role in modulating dopamine-dependent behaviors. J Neurosci 30:2396–2405

    Article  PubMed  CAS  Google Scholar 

  • Jetté L, Léger R, Thibaudeau K et al (2005) Human growth hormone-releasing factor (hGRF)1-29-albumin bioconjugates activate the GRF receptor on the anterior pituitary in rats: identification of CJC-1295 as a long-lasting GRF analog. Endocrinology 146:3052–3058

    Article  PubMed  Google Scholar 

  • Kahn CR (1994) Insulin action, diabetogenes, and the cause of type II diabetes (Banting Lecture). Diabetes 43:1066–1084

    Article  PubMed  CAS  Google Scholar 

  • Kamsler A, McHugh TJ, Gerber D et al (2010) Presynaptic m1 muscarinic receptors are necessary for mGluR long-term depression in the hippocampus. Proc Natl Acad Sci U S A 107:1618–1623

    Article  PubMed  CAS  Google Scholar 

  • Koob GF, Sanna PP, Bloom FE (1998) Neuroscience of addiction. Neuron 21:467–476

    Article  PubMed  CAS  Google Scholar 

  • Lam TK, Pocai A, Gutierrez-Juarez R et al (2005) Hypothalamic sensing of circulating fatty acids is required for glucose homeostasis. Nat Med 11:320–327

    Article  PubMed  CAS  Google Scholar 

  • Le Tissier PR, Carmignac DF, Lilley S et al (2005) Hypothalamic growth hormone-releasing hormone (GHRH) deficiency: targeted ablation of GHRH neurons in mice using a viral ion channel transgene. Mol Endocrinol 19:1251–1262

    Article  PubMed  Google Scholar 

  • Lefkowitz RJ, Rajagopal K, Whalen EJ (2006) New roles for β-arrestins in cell signaling: not just for seven-transmembrane receptors. Mol Cell 24:643–652

    Article  PubMed  CAS  Google Scholar 

  • Lemberger T, Parlato R, Dassesse D et al (2007) Expression of Cre recombinase in dopaminoceptive neurons. BMC Neurosci 8:4

    Article  PubMed  Google Scholar 

  • Levey AI, Kitt CA, Simonds WF et al (1991) Identification and localization of muscarinic acetylcholine receptor proteins in brain with subtype-specific antibodies. J Neurosci 11:3218–3226

    PubMed  CAS  Google Scholar 

  • Levey AI, Edmunds SM, Heilman CJ et al (1994) Localization of muscarinic m3 receptor protein and M3 receptor binding in rat brain. Neuroscience 63:207–221

    Article  PubMed  CAS  Google Scholar 

  • Li JH, Gautam D, Han SJ et al (2009) Hepatic muscarinic acetylcholine receptors are not critically involved in maintaining glucose homeostasis in mice. Diabetes 58:2776–2787

    Article  PubMed  CAS  Google Scholar 

  • Lingohr MK, Briaud I, Dickson LM et al (2006) Specific regulation of IRS-2 expression by glucose in rat primary pancreatic islet β-cells. J Biol Chem 281:15884–15892

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Yamada S, Oki T et al (2004) Functional analysis of muscarinic acetylcholine receptors using knockout mice. Life Sci 75:2971–2981

    Article  PubMed  CAS  Google Scholar 

  • Mayford M, Bach ME, Huang YY et al (1996) Control of memory formation through regulated expression of a CaMKII transgene. Science 274:1678–1683

    Article  PubMed  CAS  Google Scholar 

  • McCutchen E, Scheiderer CL, Dobrunz LE, McMahon LL (2006) Coexistence of muscarinic long-term depression with electrically induced long-term potentiation and depression at CA3-CA1 synapses. J Neurophysiol 96:3114–3121

    Article  PubMed  Google Scholar 

  • McGinty JF (1999) Regulation of neurotransmitter interactions in the ventral striatum. Ann N Y Acad Sci 877:129–139

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. J Neurosci 21:5239–5250

    PubMed  CAS  Google Scholar 

  • Nesher R, Cerasi E (2002) Modeling phasic insulin release: immediate and time-dependent effects of glucose. Diabetes 51(Suppl 1):S53–S59

    Article  PubMed  CAS  Google Scholar 

  • Niessen M (2006) On the role of IRS2 in the regulation of functional β-cell mass. Arch Physiol Biochem 112:65–73

    Article  PubMed  CAS  Google Scholar 

  • Oki T, Takagi Y, Inagaki S et al (2005) Quantitative analysis of binding parameters of [3H]N-methylscopolamine in central nervous system of muscarinic acetylcholine receptor knockout mice. Brain Res Mol Brain Res 133:6–11

    Article  PubMed  CAS  Google Scholar 

  • Pocai A, Lam TK, Gutierrez-Juarez R et al (2005a) Hypothalamic KATP channels control hepatic glucose production. Nature 434:1026–1031

    Article  PubMed  CAS  Google Scholar 

  • Pocai A, Obici S, Schwartz GJ, Rossetti L (2005b) A brain-liver circuit regulates glucose homeostasis. Cell Metab 1:53–61

    Article  PubMed  CAS  Google Scholar 

  • Poulin B, Butcher A, McWilliams P et al (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci U S A 107:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Regard JB, Kataoka H, Cano DA et al (2007) Probing cell type-specific functions of Gi in vivo identifies GPCR regulators of insulin secretion. J Clin Invest 117:4034–4043

    PubMed  CAS  Google Scholar 

  • Ross EM, Wilkie TM (2000) GTPase-activating proteins for heterotrimeric G proteins: regulators of G protein signaling (RGS) and RGS-like proteins. Annu Rev Biochem 69:795–827

    Article  PubMed  CAS  Google Scholar 

  • Ruiz de Azua I, Scarselli M, Rosemond E et al (2010) RGS4 is a negative regulator of insulin release from pancreatic β-cells in vitro and in vivo. Proc Natl Acad Sci U S A 107:7999–8004

    Article  PubMed  Google Scholar 

  • Scearce-Levie K, Coward P, Redfern CH, Conklin BR (2001) Engineering receptors activated solely by synthetic ligands (RASSLs). Trends Pharmacol Sci 22:414–420

    Article  PubMed  CAS  Google Scholar 

  • Shekhar A, Potter WZ, Lightfoot J et al (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    Article  PubMed  Google Scholar 

  • Shi Y, Oury F, Yadav VK et al (2010) Signaling through the M3 muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11:231–238

    Article  PubMed  CAS  Google Scholar 

  • Takeda S, Elefteriou F, Levasseur R et al (2002) Leptin regulates bone formation via the sympathetic nervous system. Cell 111:305–317

    Article  PubMed  CAS  Google Scholar 

  • Torrecilla I, Spragg EJ, Poulin B et al (2007) Phosphorylation and regulation of a G protein-coupled receptor by protein kinase CK2. J Cell Biol 177:127–137

    Article  PubMed  CAS  Google Scholar 

  • Tronche F, Kellendonk C, Kretz O et al (1999) Disruption of the glucocorticoid receptor gene in the nervous system results in reduced anxiety. Nat Genet 23:99–103

    Article  PubMed  CAS  Google Scholar 

  • Tzavara ET, Bymaster FP, Davis RJ et al (2004) M4 muscarinic receptors regulate the dynamics of cholinergic and dopaminergic neurotransmission: relevance to the pathophysiology and treatment of related CNS pathologies. FASEB J 18:1410–1412

    PubMed  CAS  Google Scholar 

  • Vatamaniuk MZ, Horyn OV, Vatamaniuk OK, Doliba NM (2003) Acetylcholine affects rat liver metabolism via type 3 muscarinic receptors in hepatocytes. Life Sci 72:1871–1882

    Article  PubMed  CAS  Google Scholar 

  • Vilaro MT, Mengod G, Palacios JM (1993) Advances and limitations of the molecular neuroanatomy of cholinergic receptors: the example of multiple muscarinic receptors. Prog Brain Res 98:95–101

    Article  PubMed  CAS  Google Scholar 

  • Volpicelli LA, Levey AI (2004) Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res 145:59–66

    Article  PubMed  CAS  Google Scholar 

  • Wang PY, Caspi L, Lam CK et al (2008) Upper intestinal lipids trigger a gut-brain-liver axis to regulate glucose production. Nature 452:1012–1016

    Article  PubMed  CAS  Google Scholar 

  • Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69–99

    PubMed  CAS  Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    Article  PubMed  CAS  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  PubMed  CAS  Google Scholar 

  • Wettschureck N, Moers A, Wallenwein B et al (2005) Loss of Gq/11 family G proteins in the nervous system causes pituitary somatotroph hypoplasia and dwarfism in mice. Mol Cell Biol 25:1942–1948

    Article  PubMed  CAS  Google Scholar 

  • White MF (2006) Regulating insulin signaling and β-cell function through IRS proteins. Can J Physiol Pharmacol 84:725–737

    Article  PubMed  CAS  Google Scholar 

  • Wise RA (1996) Neurobiology of addiction. Curr Opin Neurobiol 6:243–251

    Article  PubMed  CAS  Google Scholar 

  • Woolley ML, Carter HJ, Gartlon JE et al (2009) Attenuation of amphetamine-induced activity by the non-selective muscarinic receptor agonist, xanomeline, is absent in muscarinic M4 receptor knockout mice and attenuated in muscarinic M1 receptor knockout mice. Eur J Pharmacol 603:147–149

    Article  PubMed  CAS  Google Scholar 

  • Yadav VK, Oury F, Suda N et al (2009) A serotonin-dependent mechanism explains the leptin regulation of bone mass, appetite, and energy expenditure. Cell 138:976–989

    Article  PubMed  CAS  Google Scholar 

  • Zawalich WS, Zawalich KC, Tesz GJ et al (2004) Effects of muscarinic receptor type 3 knockout on mouse islet secretory responses. Biochem Biophys Res Commun 315:872–876

    Article  PubMed  CAS  Google Scholar 

  • Zhang W, Yamada M, Gomeza J et al (2002) Multiple muscarinic acetylcholine receptor subtypes modulate striatal dopamine release, as studied with M1-M5 muscarinic receptor knock-out mice. J Neurosci 22:6347–6352

    PubMed  CAS  Google Scholar 

  • Zhang H, Craciun LC, Mirshahi T et al (2003) PIP2 activates KCNQ channels, and its hydrolysis underlies receptor-mediated inhibition of M currents. Neuron 37:963–975

    Article  PubMed  CAS  Google Scholar 

  • Zimmet P, Alberti KG, Shaw J (2001) Global and societal implications of the diabetes epidemic. Nature 414:782–787

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

J. W. was supported by funding from the Intramural Research Program of the National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), NIH (Bethesda, MD, USA). I would like to thank all my present and past coworkers and collaborators for their invaluable contributions to the generation and phenotypical analysis of many of the new mAChR mutant mouse models reviewed in this chapter. I apologize to the many colleagues in the field whose work I was unable to cite due to space limitations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Wess .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Wess, J. (2012). Novel Muscarinic Receptor Mutant Mouse Models. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_6

Download citation

Publish with us

Policies and ethics