Skip to main content

Muscarinic Agonists and Antagonists: Effects on Gastrointestinal Function

  • Chapter
  • First Online:

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

Muscarinic agonists and antagonists are used to treat a handful of gastrointestinal (GI) conditions associated with impaired salivary secretion or altered motility of GI smooth muscle. With regard to exocrine secretion, the major muscarinic receptor expressed in salivary, gastric, and pancreatic glands is the M3 with a small contribution of the M1 receptor. In GI smooth muscle, the major muscarinic receptors expressed are the M2 and M3 with the M2 outnumbering the M3 by a ratio of at least four to one. The antagonism of both smooth muscle contraction and exocrine secretion is usually consistent with an M3 receptor mechanism despite the major presence of the M2 receptor in smooth muscle. These results are consistent with the conditional role of the M2 receptor in smooth muscle. That is, the contractile role of the M2 receptor depends on that of the M3 so that antagonism of the M3 receptor eliminates the response of the M2. The physiological roles of muscarinic receptors in the GI tract are consistent with their known signaling mechanisms. Some so-called tissue-selective M3 antagonists may owe their selectivity to a highly potent interaction with a nonmuscarinic receptor target.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Abbreviations

A23187:

5-(Methylamino)-2-({(2R,3R,6S,8S,9R,11R)-3,9,11-trimethyl-8-[(1S)-1-methyl-2-oxo-2-(1H-pyrrol-2-yl)ethyl]-1,7-dioxaspiro[5.5]undec-2-yl}methyl)-1,3-benzoxazole-4-carboxylic acid

AF-DX 116:

11-[[2-[(Diethylamino)methyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one

AQ-RA 741:

11-[[4-[4-(Diethylamino)butyl]-1-piperidinyl]acetyl]-5,11-dihydro-6H-pyrido[2,3-b][1,4]benzodiazepin-6-one

4-DAMP:

N,N-dimethyl-4-piperidinyl diphenlyacetate

4-DAMP mustard:

N-(2-chloroethyl)-4-piperidinyl diphenylacetate

GI:

Gastrointestinal

HHSiD:

Hexahydro-sila-difenidol

[3H]NMS:

[3H]N-methylscopolamine

I cat :

Nonselective cation conductance

K B :

Dissociation constant of the antagonist

KO:

Knockout

pK B :

Negative log dissociation constant

pK D :

Log binding affinity constant

p-F-HHSiD:

para-Fluoro-hexahydro-sila-difenidol

TRP:

Transient receptor potential

KCa :

Ca2+-activated potassium channel

References

  • Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ (2006) Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol 148:565–578

    Article  PubMed  CAS  Google Scholar 

  • Aihara T, Fujishita T, Kanatani K, Furutani K, Nakamura E, Taketo MM, Matsui M, Chen D, Okabe S (2003) Impaired gastric secretion and lack of trophic responses to hypergastrinemia in M3 muscarinic receptor knockout mice. Gastroenterology 125:1774–1784

    Article  PubMed  CAS  Google Scholar 

  • Aihara T, Nakamura Y, Taketo MM, Matsui M, Okabe S (2005) Cholinergically stimulated gastric acid secretion is mediated by M(3) and M(5) but not M(1) muscarinic acetylcholine receptors in mice. Am J Physiol Gastrointest Liver Physiol 288:G1199–G1207

    Article  PubMed  CAS  Google Scholar 

  • Andersson R, Nilsson K (1972) Cyclic AMP and calcium in relaxation in intestinal smooth muscle. Nat New Biol 238:119–120

    Article  PubMed  CAS  Google Scholar 

  • Arunlakshana O, Schild HO (1959) Some quantitative uses of drug antagonists. Br J Pharmacol 14:48–58

    CAS  Google Scholar 

  • Barras M, Coste A, Eon MT, Guillot E (1999) Pharmacological characterization of muscarinic receptors implicated in rabbit detrusor muscle contraction and activation of inositol phospholipid hydrolysis in rabbit detrusor and parotid gland. Fundam Clin Pharmacol 13:562–570

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1984) Inositol trisphosphate and diacylglycerol as second messengers. Biochem J 220:345–360

    PubMed  CAS  Google Scholar 

  • Bertaccini G, Coruzzi G (1989) Control of gastric acid secretion by histamine H2 receptor antagonists and anticholinergics. Pharmacol Res 21:339–352

    Article  PubMed  CAS  Google Scholar 

  • Bianchi Porro G, Petrillo M (1982) Pirenzepine in the treatment of peptic ulcer disease. Review and commentary. Scand J Gastroenterol Suppl 72:229–236

    PubMed  CAS  Google Scholar 

  • Black JW, Gerskowitch VP, Leff P, Shankley NP (1986) Analysis of competitive antagonism when this property occurs as part of a pharmacological resultant. Br J Pharmacol 89:547–555

    PubMed  CAS  Google Scholar 

  • Bolger GT, Gengo P, Klockowski R, Luchowski E, Siegel H, Janis RA, Triggle AM, Triggle DJ (1983) Characterization of binding of the Ca++ channel antagonist, [3H]nitrendipine, to guinea-pig ileal smooth muscle. J Pharmacol Exp Ther 225:291–309

    PubMed  CAS  Google Scholar 

  • Bolton TB (1979) Mechanisms of action of transmitters and other substances on smooth muscle. Physiol Rev 59:606–718

    PubMed  CAS  Google Scholar 

  • Bolton TB, Clark JP (1981) Actions of various muscarinic agonists on membrane potential, potassium efflux, and contraction of longitudinal muscle of guinea-pig intestine. Br J Pharmacol 72:319–334

    PubMed  CAS  Google Scholar 

  • Bolton TB, Lim SP (1989) Properties of calcium stores and transient outward currents in single smooth muscle cells of rabbit intestine. J Physiol 409:385–401

    PubMed  CAS  Google Scholar 

  • Bolton TB, Zholos AV (1997) Activation of M2 muscarinic receptors in guinea-pig ileum opens cationic channels modulated by M3 muscarinic receptors. Life Sci 60:1121–1128

    Article  PubMed  CAS  Google Scholar 

  • Braga MA, Tarzia O, Bergamaschi CC, Santos FA, Andrade ED, Groppo FC (2009) Comparison of the effects of pilocarpine and cevimeline on salivary flow. Int J Dent Hyg 7:126–130

    Article  PubMed  CAS  Google Scholar 

  • Burgen AS, Spero L (1968) The action of acetylcholine and other drugs on the efflux of potassium and rubidium from smooth muscle of the guinea-pig intestine. Br J Pharmacol 34:99–115

    PubMed  CAS  Google Scholar 

  • Callahan MJ (2002) Irritable bowel syndrome neuropharmacology. A review of approved and investigational compounds. J Clin Gastroenterol 35:S58–S67

    Article  PubMed  CAS  Google Scholar 

  • Candell LM, Yun SH, Tran LL, Ehlert FJ (1990) Differential coupling of subtypes of the muscarinic receptor to adenylate cyclase and phosphoinositide hydrolysis in the longitudinal muscle of the rat ileum. Mol Pharmacol 38:689–697

    PubMed  CAS  Google Scholar 

  • Cantoni GL, Eastman G (1946) On the response of the intestine to smooth muscle stimulants. J Pharmacol Exp Ther 87:392–399

    PubMed  CAS  Google Scholar 

  • Chang KJ, Triggle DJ (1973) Quantitative aspects of drug-receptor interactions. I. Ca2+ and cholinergic receptor activation in smooth muscle: a basic model for drug-receptor interactions. J Theor Biol 40:125–154

    Article  PubMed  CAS  Google Scholar 

  • Chang HY, Kelly EC, Lembo AJ (2006) Current gut-directed therapies for irritable bowel syndrome. Curr Treat Options Gastroenterol 9:314–323

    Article  PubMed  Google Scholar 

  • Cole WC, Carl A, Sanders KM (1989) Muscarinic suppression of Ca2+-dependent K current in colonic smooth muscle. Am J Physiol 257:C481–C487

    PubMed  CAS  Google Scholar 

  • Dale MM (1958) An inhibitory effect of acetylcholine on the response of the guinea-pig ileum to histamine. Br J Pharmacol 13:17–19

    CAS  Google Scholar 

  • Daly MJ, Humphray JM, Stables R (1982) Effects of H2-receptor antagonists and anticholinoceptor drugs on gastric and salivary secretion induced by bethanechol in the anaesthetized dog. Br J Pharmacol 76:361–365

    PubMed  CAS  Google Scholar 

  • Del Tacca M, Danes R, Blandizzi C, Bernardini MC (1990) Differential affinities of AF-DX 116, atropine, and pirenzepine for muscarinic receptors in guinea pig gastric fundus, atria and urinary bladder: might atropine distinguish among muscarinic receptor subtypes? Pharmacology 40:241–249

    Article  PubMed  Google Scholar 

  • Dresviannikov AV, Bolton TB, Zholos AV (2006) Muscarinic receptor-activated cationic channels in murine ileal myocytes. Br J Pharmacol 149:179–187

    Article  PubMed  CAS  Google Scholar 

  • Drossman DA, Camilleri M, Mayer EA, Whitehead WE (2002) AGA technical review on irritable bowel syndrome. Gastroenterology 123:2108–2131

    Article  PubMed  Google Scholar 

  • Eglen RM, Harris GC (1993) Selective inactivation of muscarinic M2 and M3 receptors in guinea-pig ileum and atria in vitro. Br J Pharmacol 109:946–952

    PubMed  CAS  Google Scholar 

  • Eglen RM, Whiting RL (1988) Comparison of the muscarinic receptors of the guinea-pig oesophageal muscularis mucosae and trachea in vitro. J Auton Pharmacol 8:181–189

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Huff MM, Montgomery WW, Whiting RL (1988) Differential effects of pertussis toxin on muscarinic responses in isolated atria and smooth muscle. J Auton Pharmacol 8:29–37

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Cornett CM, Whiting RL (1990) Interaction of p-F-HHSiD (p-Fluoro-hexahydrosila-difenidol) at muscarinic receptors in guinea-pig trachea. Naunyn Schmiedebergs Arch Pharmacol 342:394–399

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Hegde SS, Watson N (1996a) Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48:531–565

    PubMed  CAS  Google Scholar 

  • Eglen RM, Peelle B, Pulido-Rios MT, Leung E (1996b) Functional interactions between muscarinic M2 receptors and 5-hydroxytryptamine (5-HT)4 and β3-adrenoceptors in isolated oesophageal muscularis mucosae of the rat. Br J Pharmacol 119:595–601

    PubMed  CAS  Google Scholar 

  • Ehlert FJ (1985) The relationship between muscarinic receptor occupancy and adenylate cyclase inhibition in the rabbit myocardium. Mol Pharmacol 28:410–421

    PubMed  CAS  Google Scholar 

  • Ehlert FJ (2003a) Contractile role of M2 and M3 muscarinic receptors in gastrointestinal, airway and urinary bladder smooth muscle. Life Sci 74:355–366

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ (2003b) Pharmacological analysis of the contractile role of M2 and M3 muscarinic receptor in smooth muscle. Receptors Channels 9:261–277

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ, Ostrom RS, Sawyer GW (1997a) Subtypes of the muscarinic receptor in smooth muscle. Life Sci 61:1729–1740

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ, Thomas EA, Gerstin EH, Griffin MT (1997b) Muscarinic receptors and gastrointestinal smooth muscle. In: Eglen RM (ed) Muscarinic receptor subtypes in smooth muscle. CRC, Boca Raton, FL, pp 92–147

    Google Scholar 

  • Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M (2005a) The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther 313:368–378

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ, Hsu JC, Leung K, Lee AG, Shehnaz D, Griffin MT (2005b) Comparison of the antimuscarinic action of p-fluorohexahydrosiladifenidol in ileal and tracheal smooth muscle. J Pharmacol Exp Ther 312:592–600

    Article  PubMed  CAS  Google Scholar 

  • Esqueda EE, Gerstin EH Jr, Griffin MT, Ehlert FJ (1996) Stimulation of cyclic AMP accumulation and phosphoinositide hydrolysis by M3 muscarinic receptors in the rat peripheral lung. Biochem Pharmacol 52:643–658

    Article  PubMed  CAS  Google Scholar 

  • Feldman M (1984) Inhibition of gastric acid secretion by selective and nonselective anticholinergics. Gastroenterology 86:361–366

    PubMed  CAS  Google Scholar 

  • Figueroa KW, Griffin MT, Ehlert FJ (2008) Selectivity of agonists for the active state of M1–M4 muscarinic receptor subtypes. J Pharmacol Exp Ther 328:331–342

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J (2004) Cholinergic stimulation of salivary secretion studied with M1 and M3 muscarinic receptor single- and double-knockout mice. Mol Pharmacol 66:260–267

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Han SJ, Heard TS, Cui Y, Miller G, Bloodworth L, Wess J (2005) Cholinergic stimulation of amylase secretion from pancreatic acinar cells studied with muscarinic acetylcholine receptor mutant mice. J Pharmacol Exp Ther 313:995–1002

    Article  PubMed  CAS  Google Scholar 

  • Gil DW, Wolfe BB (1985) Pirenzepine distinguishes between muscarinic receptor-mediated phosphoinositide breakdown and inhibition of adenylate cyclase. J Pharmacol Exp Ther 232(3):608–616

    PubMed  CAS  Google Scholar 

  • Giraldo E, Monferini E, Ladinsky H, Hammer R (1987) Muscarinic receptor heterogeneity in guinea pig intestinal smooth muscle: binding studies with AF-DX 116. Eur J Pharmacol 141:475–477

    Article  PubMed  CAS  Google Scholar 

  • Griffin MT, Matsui M, Shehnaz D, Ansari KZ, Taketo MM, Manabe T, Ehlert FJ (2004) Muscarinic agonist-mediated heterologous desensitization in isolated ileum requires activation of both muscarinic M2 and M3 receptors. J Pharmacol Exp Ther 308:339–349

    Article  PubMed  CAS  Google Scholar 

  • Griffin MT, Matsui M, Ostrom RS, Ehlert FJ (2009) The guinea pig ileum lacks the direct, high-potency, M(2)-muscarinic, contractile mechanism characteristic of the mouse ileum. Naunyn Schmiedebergs Arch Pharmacol 380:327–335

    Article  PubMed  CAS  Google Scholar 

  • Hammer R (1980) Muscarinic receptors in the stomach. Scand J Gastroenterol Suppl 66:5–11

    PubMed  CAS  Google Scholar 

  • Hammer R, Berrie CP, Birdsall NJ, Burgen AS, Hulme EC (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283:90–92

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JN, Butera JA, Carrick T, Kramer A, Kowal D, Lock T, Marquis KL, Pausch MH, Popiolek M, Sun SC, Tseng E, Uveges AJ, Mayer SC (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–56

    Article  PubMed  CAS  Google Scholar 

  • Herawi M, Lambrecht G, Mutschler E, Moser U, Pfeiffer A (1988) Different binding properties of muscarinic M2-receptor subtypes for agonists and antagonists in porcine gastric smooth muscle and mucosa. Gastroenterology 94:630–637

    PubMed  CAS  Google Scholar 

  • Hoiting BH, Meurs H, Schuiling M, Kuipers R, Elzinga CR, Zaagsma J (1996) Modulation of agonist-induced phosphoinositide metabolism, Ca2+ signalling and contraction of airway smooth muscle by cyclic AMP-dependent mechanisms. Br J Pharmacol 117:419–426

    PubMed  CAS  Google Scholar 

  • Hu CL, Chandra R, Ge H, Pain J, Yan L, Babu G, Depre C, Iwatsubo K, Ishikawa Y, Sadoshima J, Vatner SF, Vatner DE (2009) Adenylyl cyclase type 5 protein expression during cardiac development and stress. Am J Physiol Heart Circ Physiol 297:H1776–H1782

    Article  PubMed  CAS  Google Scholar 

  • Iino S, Nojyo Y (2006) Muscarinic M(2) acetylcholine receptor distribution in the guinea-pig gastrointestinal tract. Neuroscience 138:549–559

    Article  PubMed  CAS  Google Scholar 

  • Inoue R, Isenberg G (1990) Acetylcholine activates nonselective cation channels in guinea pig ileum through a G protein. Am J Physiol 258:C1173–C1178

    PubMed  CAS  Google Scholar 

  • Ishikawa Y, Katsushika S, Chen L, Halnon NJ, Kawabe J, Homcy CJ (1992) Isolation and characterization of a novel cardiac adenylylcyclase cDNA. J Biol Chem 267:13553–13557

    PubMed  CAS  Google Scholar 

  • Ito Y, Oyunzul L, Seki M, Fujino Oki T, Matsui M, Yamada S (2009) Quantitative analysis of the loss of muscarinic receptors in various peripheral tissues in M1-M5 receptor single knockout mice. Br J Pharmacol 156:1147–1153

    Article  PubMed  CAS  Google Scholar 

  • Jafferji SS, Michell RH (1976) Muscarinic cholinergic stimulation of phosphatidylinositol turnover in the longitudinal smooth muscle of guinea-pig ileum. Biochem J 154:653–657

    PubMed  CAS  Google Scholar 

  • Kajimura M, Reuben MA, Sachs G (1992) The muscarinic receptor gene expressed in rabbit parietal cells is the m3 subtype. Gastroenterology 103:870–875

    PubMed  CAS  Google Scholar 

  • Kamikawa Y, Uchida K, Shimo Y (1985) Heterogeneity of muscarinic receptors in the guinea pig esophageal muscularis mucosae and ileal longitudinal muscle. Gastroenterology 88:706–716

    PubMed  CAS  Google Scholar 

  • Kato M, Ohkuma S, Kataoka K, Kashima K, Kuriyama K (1992) Characterization of muscarinic receptor subtypes on rat pancreatic acini: pharmacological identification by secretory responses and binding studies. Digestion 52:194–203

    Article  PubMed  CAS  Google Scholar 

  • Kim SJ, Koh EM, Kang TM, Kim YC, So I, Isenberg G, Kim KW (1998) Ca2+ influx through carbachol-activated non-selective cation channels in guinea-pig gastric myocytes. J Physiol 513(Pt 3):749–760

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T, Hashiba K, Cao J, Unno T, Komori S, Yamada M, Wess J, Taneike T (2007) Functional roles of muscarinic M2 and M3 receptors in mouse stomach motility: studies with muscarinic receptor knockout mice. Eur J Pharmacol 554:212–222

    Article  PubMed  CAS  Google Scholar 

  • Korc M, Ackerman MS, Roeske WR (1987) A cholinergic antagonist identifies a subclass of muscarinic receptors in isolated rat pancreatic acini. J Pharmacol Exp Ther 240:118–122

    PubMed  CAS  Google Scholar 

  • Lambrecht G, Feifel R, Moser U, Wagner-Roder M, Choo LK, Camus J, Tastenoy M, Waelbroeck M, Strohmann C, Tacke R, Rodrigues de Miranda JF, Christophe J, Mutschler E (1989) Pharmacology of hexahydro-difenidol, hexahydro-sila-difenidol and related selective muscarinic antagonists. Trends Pharmacol Sci (Suppl): 60–64

    Google Scholar 

  • Lee HK, Bayguinov O, Sanders KM (1993) Role of nonselective cation current in muscarinic responses of canine colonic muscle. Am J Physiol 265:C1463–C1471

    PubMed  CAS  Google Scholar 

  • Lee YM, Kim BJ, Kim HJ, Yang DK, Zhu MH, Lee KP, So I, Kim KW (2003) TRPC5 as a candidate for the nonselective cation channel activated by muscarinic stimulation in murine stomach. Am J Physiol Gastrointest Liver Physiol 284:G604–G616

    PubMed  CAS  Google Scholar 

  • Liebmann C, Nawrath S, Schnittler M, Schubert H, Jakobs KH (1992) Binding characteristics and functional G protein coupling of muscarinic acetylcholine receptors in rat duodenum smooth muscle membranes. Naunyn Schmiedebergs Arch Pharmacol 345:7–15

    Article  PubMed  CAS  Google Scholar 

  • Lin S, Kajimura M, Takeuchi K, Kodaira M, Hanai H, Kaneko E (1997) Expression of muscarinic receptor subtypes in rat gastric smooth muscle: effect of M3 selective antagonist on gastric motility and emptying. Dig Dis Sci 42:907–914

    Article  PubMed  CAS  Google Scholar 

  • Louie DS, Owyang C (1986) Muscarinic receptor subtypes on rat pancreatic acini: secretion and binding studies. Am J Physiol 251:G275–G279

    PubMed  CAS  Google Scholar 

  • Maeda A, Kubo T, Mishina M, Numa S (1988) Tissue distribution of mRNAs encoding muscarinic acetylcholine receptor subtypes. FEBS Lett 239:339–342

    Article  PubMed  CAS  Google Scholar 

  • Manolopoulos VG, Liu J, Unsworth BR, Lelkes PI (1995) Adenylyl cyclase isoforms are differentially expressed in primary cultures of endothelial cells and whole tissue homogenates from various rat tissues. Biochem Biophys Res Commun 208:323–331

    Article  PubMed  CAS  Google Scholar 

  • Maruyama S, Oki T, Otsuka A, Shinbo H, Ozono S, Kageyama S, Mikami Y, Araki I, Takeda M, Masuyama K, Yamada S (2006) Human muscarinic receptor binding characteristics of antimuscarinic agents to treat overactive bladder. J Urol 175:365–369

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Motomura D, Karasawa H, Fujikawa T, Jiang J, Komiya Y, Takahashi S, Taketo MM (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97:9579–9584

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Motomura D, Fujikawa T, Jiang J, Takahashi S, Manabe T, Taketo MM (2002) Mice lacking M2 and M3 muscarinic acetylcholine receptors are devoid of cholinergic smooth muscle contractions but still viable. J Neurosci 22:10627–10632

    PubMed  CAS  Google Scholar 

  • Matsui M, Griffin MT, Shehnaz D, Taketo MM, Ehlert FJ (2003) Increased relaxant action of forskolin and isoproterenol against muscarinic agonist-induced contractions in smooth muscle from M2 receptor knockout mice. J Pharmacol Exp Ther 305:106–113

    Article  PubMed  CAS  Google Scholar 

  • Maxwell PR, Mendall MA, Kumar D (1997) Irritable bowel syndrome. Lancet 350:1691–1695

    Article  PubMed  CAS  Google Scholar 

  • Meloy TD, Daniels DV, Hegde SS, Eglen RM, Ford AP (2001) Functional characterization of rat submaxillary gland muscarinic receptors using microphysiometry. Br J Pharmacol 132:1606–1614

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Whiting RL (1987) Direct binding studies on ileal and cardiac muscarinic receptors. Br J Pharmacol 92:755–767

    PubMed  CAS  Google Scholar 

  • Muinuddin A, Naqvi K, Sheu L, Gaisano HY, Diamant NE (2005) Regional differences in cholinergic regulation of potassium current in feline esophageal circular smooth muscle. Am J Physiol Gastrointest Liver Physiol 288:G1233–G1240

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Kimura J, Yamaguchi O (2002) Muscarinic M2 receptors inhibit Ca2+-activated K+ channels in rat bladder smooth muscle. Int J Urol 9:689–696

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Matsui M, Uchida K, Futatsugi A, Kusakawa S, Matsumoto N, Nakamura K, Manabe T, Taketo MM, Mikoshiba K (2004) M(3) muscarinic acetylcholine receptor plays a critical role in parasympathetic control of salivation in mice. J Physiol 558:561–575

    Article  PubMed  CAS  Google Scholar 

  • Nikolov NP, Illei GG (2009) Pathogenesis of Sjogren’s syndrome. Curr Opin Rheumatol 21:465–470

    Article  PubMed  Google Scholar 

  • Ontsouka EC, Bruckmaier RM, Steiner A, Blum JW, Meylan M (2007) Messenger RNA levels and binding sites of muscarinic acetylcholine receptors in gastrointestinal muscle layers from healthy dairy cows. J Recept Signal Transduct Res 27:147–166

    Article  PubMed  CAS  Google Scholar 

  • Ostrom RS, Ehlert FJ (1997) M2 muscarinic receptor inhibition of agonist-induced cyclic adenosine monophosphate accumulation and relaxation in the guinea pig ileum. J Pharmacol Exp Ther 280:1–11

    Google Scholar 

  • Otsuguro K, Tang J, Tang Y, Xiao R, Freichel M, Tsvilovskyy V, Ito S, Flockerzi V, Zhu MX, Zholos AV (2008) Isoform-specific inhibition of TRPC4 channel by phosphatidylinositol 4,5-bisphosphate. J Biol Chem 283:10026–10036

    Article  PubMed  CAS  Google Scholar 

  • Pacaud P, Bolton TB (1991) Relation between muscarinic receptor cationic current and internal calcium in guinea-pig jejunal smooth muscle cells. J Physiol 441:477–499

    PubMed  CAS  Google Scholar 

  • Parkman HP, Hasler WL, Fisher RS (2004) American Gastroenterological Association technical review on the diagnosis and treatment of gastroparesis. Gastroenterology 127:1592–1622

    Article  PubMed  Google Scholar 

  • Paton WDM (1961) A theory of drug action based on the rate of drug-receptor combination. Proc Roy Soc Lond B 154:21–69

    Article  Google Scholar 

  • Paulin RF, Menani JV, Colombari E, De Paula PM, Colombari DS (2009) Role of the medial septal area on pilocarpine-induced salivary secretion and water intake. Brain Res 1298:145–152

    Article  PubMed  CAS  Google Scholar 

  • Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334:434–437

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer A, Rochlitz H, Herz A, Paumgartner G (1988) Stimulation of acid secretion and phosphoinositol production by rat parietal cell muscarinic M2 receptors. Am J Physiol 254:G622–G629

    PubMed  CAS  Google Scholar 

  • Pfeiffer A, Rochlitz H, Noelke B, Tacke R, Moser U, Mutschler E, Lambrecht G (1990) Muscarinic receptors mediating acid secretion in isolated rat gastric parietal cells are of M3 type. Gastroenterology 98:218–222

    Article  PubMed  CAS  Google Scholar 

  • Pontari MA, Braverman AS, Ruggieri MR Sr (2004) The M2 muscarinic receptor mediates in vitro bladder contractions from patients with neurogenic bladder dysfunction. Am J Physiol Regul Integr Comp Physiol 286:R874–R880

    Article  PubMed  CAS  Google Scholar 

  • Preiksaitis HG, Krysiak PS, Chrones T, Rajgopal V, Laurier LG (2000) Pharmacological and molecular characterization of muscarinic receptor subtypes in human esophageal smooth muscle. J Pharmacol Exp Ther 295:879–888

    PubMed  CAS  Google Scholar 

  • Ramos-Casals M, Tzioufas AG, Stone JH, Siso A, Bosch X (2010) Treatment of primary Sjogren syndrome: a systematic review. JAMA 304:452–460

    Article  PubMed  CAS  Google Scholar 

  • Reddy H, Watson N, Ford AP, Eglen RM (1995) Characterization of the interaction between muscarinic M2 receptors and beta-adrenoceptor subtypes in guinea-pig isolated ileum. Br J Pharmacol 114:49–56

    PubMed  CAS  Google Scholar 

  • Rimele TJ, O’Dorisio MS, Gaginella TS (1981) Evidence for muscarinic receptors on rat colonic epithelial cells: binding of [3H]quinuclidinyl benzilate. J Pharmacol Exp Ther 218:426–434

    PubMed  CAS  Google Scholar 

  • Ringdahl B (1987) Selectivity of partial agonists related to oxotremorine based on differences in muscarinic receptor reserve between the guinea pig ileum and urinary bladder. Mol Pharmacol 31:351–356

    PubMed  CAS  Google Scholar 

  • Rosenberger LB, Ticku MK, Triggle DJ (1979) The effect of Ca2+ antagonists on mechanical responses and Ca2+ movements in guinea pig ileal longitudinal smooth muscle. Can J Physiol Pharmacol 57:333–347

    Article  PubMed  CAS  Google Scholar 

  • Rossowski WJ, Ozden A, Ertan A, Maumus M, Arimura A (1988) Somatostatin, gastrin, and cholinergic muscarinic binding sites in rat gastric, duodenal, and jejunal mucosa. Scand J Gastroenterol 23:717–725

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Unno T, Matsuyama H, Uchiyama M, Hattori M, Nishimura M, Komori S (2006) Characterization of muscarinic receptor-mediated cationic currents in longitudinal smooth muscle cells of mouse small intestine. J Pharmacol Sci 100:215–226

    Article  PubMed  CAS  Google Scholar 

  • Sakamoto T, Unno T, Kitazawa T, Taneike T, Yamada M, Wess J, Nishimura M, Komori S (2007) Three distinct muscarinic signalling pathways for cationic channel activation in mouse gut smooth muscle cells. J Physiol 582:41–61

    Article  PubMed  CAS  Google Scholar 

  • Sawyer GW, Ehlert FJ (1998) Contractile role of the M2 and M3 muscarinic receptors in the guinea pig colon. J Pharmacol Exp Ther 284:269–277

    PubMed  CAS  Google Scholar 

  • Sawyer G, Ehlert F (1999a) Pertussis toxin increases isoproterenol induced relaxation in field-stimulated ileum. Eur J Pharmacol 367:81–84 [published erratum appears in Eur J Pharmacol 1999 May 21;372(3):329]

    Article  PubMed  CAS  Google Scholar 

  • Sawyer GW, Ehlert FJ (1999b) Muscarinic M3 receptor inactivation reveals a pertussis toxin-sensitive contractile response in the guinea pig colon. J Pharmacol Exp Ther 289:464–476

    PubMed  CAS  Google Scholar 

  • Shehnaz D, Ansari KZ, Ehlert FJ (2001) Acetylcholine-induced desensitization of the contractile response to histamine in guinea pig ileum is prevented by either pertussis toxin-treatment or by selective inactivation of muscarinic M3 receptors. J Pharmacol Exp Ther 297:1152–1159

    PubMed  CAS  Google Scholar 

  • Shen A, Mitchelson F (1998) Muscarinic M2 receptor-mediated contraction in the guinea pig Taenia caeci: possible involvement of protein kinase C. Biochem Pharmacol 56:1529–1537

    Article  PubMed  CAS  Google Scholar 

  • Shin CY, Lee YP, Song HJ, Je HD, Sohn UD (2007) Cyclic AMP dependent down regulation in the relaxation of smooth muscle cells of cat esophagitis. Arch Pharm Res 30:715–722

    Article  PubMed  CAS  Google Scholar 

  • Soll AH, Walsh JH (1979) Regulation of gastric acid secretion. Annu Rev Physiol 41:35–53

    Article  PubMed  CAS  Google Scholar 

  • Soykan I, Sivri B, Sarosiek I, Kiernan B, McCallum RW (1998) Demography, clinical characteristics, psychological and abuse profiles, treatment, and long-term follow-up of patients with gastroparesis. Dig Dis Sci 43:2398–2404

    Article  PubMed  CAS  Google Scholar 

  • Spinelli A (2007) Irritable bowel syndrome. Clin Drug Investig 27:15–33

    Article  PubMed  CAS  Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885

    PubMed  CAS  Google Scholar 

  • Stengel PW, Yamada M, Wess J, Cohen ML (2002) M(3)-receptor knockout mice: muscarinic receptor function in atria, stomach fundus, urinary bladder, and trachea. Am J Physiol Regul Integr Comp Physiol 282:R1443–R1449

    PubMed  CAS  Google Scholar 

  • Sutliff VE, Rattan S, Gardner JD, Jensen RT (1989) Characterization of cholinergic receptors mediating pepsinogen secretion from chief cells. Am J Physiol 257:G226–G234

    PubMed  CAS  Google Scholar 

  • Takakura AC, Moreira TS, Laitano SC, De Luca Junior LA, Renzi A, Menani JV (2003) Central muscarinic receptors signal pilocarpine-induced salivation. J Dent Res 82:993–997

    Article  PubMed  CAS  Google Scholar 

  • Thomas EA, Ehlert FJ (1994) Pertussis toxin blocks M2 muscarinic receptor-mediated effects on contraction and cyclic AMP in the guinea pig ileum, but not M3-mediated contractions and phosphoinositide hydrolysis. J Pharmacol Exp Ther 271:1042–1050

    PubMed  CAS  Google Scholar 

  • Thomas EA, Hsu HH, Griffin MT, Hunter AL, Luong T, Ehlert FJ (1992) Conversion of N-(2-chloroethyl)-4-piperidinyl diphenylacetate (4-DAMP mustard) to an aziridinium ion and its interaction with muscarinic receptors in various tissues. Mol Pharmacol 41:718–726

    PubMed  CAS  Google Scholar 

  • Thomas EA, Baker SA, Ehlert FJ (1993) Functional role for the M2 muscarinic receptor in smooth muscle of guinea pig ileum. Mol Pharmacol 44:102–110

    PubMed  CAS  Google Scholar 

  • Tien XY, Wahawisan R, Wallace LJ, Gaginella TS (1985) Intestinal epithelial cells and musculature contain different muscarinic binding sites. Life Sci 36:1949–1955

    Article  PubMed  CAS  Google Scholar 

  • Tran JA, Matsui M, Ehlert FJ (2006) Differential coupling of muscarinic M1, M2, and M3 receptors to phosphoinositide hydrolysis in urinary bladder and longitudinal muscle of the ileum of the mouse. J Pharmacol Exp Ther 318:649–656

    Article  PubMed  CAS  Google Scholar 

  • Tran JA, Chang A, Matsui M, Ehlert FJ (2009) Estimation of relative microscopic affinity constants of agonists for the active state of the receptor in functional studies on M2 and M3 muscarinic receptors. Mol Pharmacol 75:381–396

    Article  PubMed  CAS  Google Scholar 

  • Tsvilovskyy VV, Zholos AV, Aberle T, Philipp SE, Dietrich A, Zhu MX, Birnbaumer L, Freichel M, Flockerzi V (2009) Deletion of TRPC4 and TRPC6 in mice impairs smooth muscle contraction and intestinal motility in vivo. Gastroenterology 137:1415–1424

    Article  PubMed  CAS  Google Scholar 

  • Unno T, Komori S, Ohashi H (1995) Inhibitory effect of muscarinic receptor activation on Ca2+ channel current in smooth muscle cells of guinea-pig ileum. J Physiol 484:567–581

    PubMed  CAS  Google Scholar 

  • Unno T, Matsuyama H, Sakamoto T, Uchiyama M, Izumi Y, Okamoto H, Yamada M, Wess J, Komori S (2005) M(2) and M(3) muscarinic receptor-mediated contractions in longitudinal smooth muscle of the ileum studied with receptor knockout mice. Br J Pharmacol 146:98–108

    Article  PubMed  CAS  Google Scholar 

  • Vogalis F, Goyal RK (1997) Activation of small conductance Ca(2+)-dependent K+ channels by purinergic agonists in smooth muscle cells of the mouse ileum. J Physiol 502(Pt 3):497–508

    Article  PubMed  CAS  Google Scholar 

  • Wade GR, Sims SM (1993) Muscarinic stimulation of tracheal smooth muscle cells activates large-conductance Ca(2+)-dependent K+ channel. Am J Physiol 265:C658–C665

    PubMed  CAS  Google Scholar 

  • Wallis RM (1995) Pre-clinical and clinical pharmacology of selective muscarinic M(3) receptor antagonists. Life Sci 56:861–868

    Article  PubMed  CAS  Google Scholar 

  • Wallis RM, Napier CM (1999) Muscarinic antagonists in development for disorders of smooth muscle function. Life Sci 64:395–401

    Article  PubMed  CAS  Google Scholar 

  • Wallis RM, Alker D, Burges RA, Cross PE, Newgreen DT, Quinn P (1993) Zamifenacin: a novel gut selective muscarinic receptor antagonist. Br J Pharmacol 109:36P

    Google Scholar 

  • Wang J, Krysiak PS, Laurier LG, Sims SM, Preiksaitis HG (2000) Human esophageal smooth muscle cells express muscarinic receptor subtypes M(1) through M(5). Am J Physiol Gastrointest Liver Physiol 279:G1059–G1069

    PubMed  CAS  Google Scholar 

  • Watson N, Reddy H, Stefanich E, Eglen RM (1995) Characterization of the interaction of zamifenacin at muscarinic receptors in vitro. Eur J Pharmacol 285:135–142

    Article  PubMed  CAS  Google Scholar 

  • Watson EL, Abel PW, DiJulio D, Zeng W, Makoid M, Jacobson KL, Potter LT, Dowd FJ (1996) Identification of muscarinic receptor subtypes in mouse parotid gland. Am J Physiol 271:C905–C913

    PubMed  CAS  Google Scholar 

  • Wilkes JM, Kajimura M, Scott DR, Hersey SJ, Sachs G (1991) Muscarinic responses of gastric parietal cells. J Membr Biol 122:97–110

    Article  PubMed  CAS  Google Scholar 

  • Xie G, Drachenberg C, Yamada M, Wess J, Raufman JP (2005) Cholinergic agonist-induced pepsinogen secretion from murine gastric chief cells is mediated by M1 and M3 muscarinic receptors. Am J Physiol Gastrointest Liver Physiol 289:G521–G529

    Article  PubMed  CAS  Google Scholar 

  • Zhang LB, Buxton IL (1991) Muscarinic receptors in canine colonic circular smooth muscle. II. Signal transduction pathways. Mol Pharmacol 40:952–959

    PubMed  CAS  Google Scholar 

  • Zhang LB, Horowitz B, Buxton IL (1991) Muscarinic receptors in canine colonic circular smooth muscle. I. Coexistence of M2 and M3 subtypes. Mol Pharmacol 40:943–951

    PubMed  CAS  Google Scholar 

  • Zholos AV, Bolton TB (1994) G-protein control of voltage dependence as well as gating of muscarinic metabotropic channels in guinea-pig ileum. J Physiol 478:195–202

    PubMed  CAS  Google Scholar 

  • Zholos AV, Bolton TB (1997) Muscarinic receptor subtypes controlling the cationic current in guinea-pig ileal smooth muscle. Br J Pharmacol 122:885–893

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frederick J. Ehlert .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ehlert, F.J., Pak, K.J., Griffin, M.T. (2012). Muscarinic Agonists and Antagonists: Effects on Gastrointestinal Function. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_15

Download citation

Publish with us

Policies and ethics