Skip to main content

Muscarinic Receptor Agonists and Antagonists: Effects on Cardiovascular Function

  • Chapter
  • First Online:
Book cover Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

Muscarinic receptor activation plays an essential role in parasympathetic regulation of cardiovascular function. The primary effect of parasympathetic stimulation is to decrease cardiac output by inhibiting heart rate. However, pharmacologically, muscarinic agonists are actually capable of producing both inhibitory and stimulatory effects on the heart as well as vasculature. This reflects the fact that muscarinic receptors are expressed throughout the cardiovascular system, even though they are not always involved in mediating parasympathetic responses. In the heart, in addition to regulating heart rate by altering the electrical activity of the sinoatrial node, activation of M2 receptors can affect conduction of electrical impulses through the atrioventricular node. These same receptors can also regulate the electrical and mechanical activity of the atria and ventricles. In the vasculature, activation of M3 and M5 receptors in epithelial cells can cause vasorelaxation, while activation of M1 or M3 receptors in vascular smooth muscle cells can cause vasoconstriction in the absence of endothelium. This review focuses on our current understanding of the signaling mechanisms involved in mediating these responses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adams DJ, Barakeh J, Laskey R, Van Breemen C (1989) Ion channels and regulation of intracellular calcium in vascular endothelial cells. FASEB J 3:2389–2400

    PubMed  CAS  Google Scholar 

  • Ahmad Z, Green FJ, Subuhi HS, Watanabe AM (1989) Autonomic regulation of type I protein phosphatase in cardiac muscle. J Biol Chem 264:3859–3863

    PubMed  CAS  Google Scholar 

  • Belevych AE, Harvey RD (2000) Muscarinic inhibitory and stimulatory regulation of the L-type Ca2+ current is not altered in cardiac ventricular myocytes from mice lacking endothelial nitric oxide synthase. J Physiol (Lond) 528:279–289

    Article  CAS  Google Scholar 

  • Belevych AE, Sims C, Harvey RD (2001) ACh-induced rebound stimulation of L-type Ca(2+) current in guinea-pig ventricular myocytes, mediated by Gβγ-dependent activation of adenylyl cyclase. J Physiol (Lond) 536:677–692

    Article  CAS  Google Scholar 

  • Beny JL, Nguyen MN, Marino M, Matsui M (2008) Muscarinic receptor knockout mice confirm involvement of M3 receptor in endothelium-dependent vasodilatation in mouse arteries. J Cardiovasc Pharmacol 51:505–512

    Article  PubMed  CAS  Google Scholar 

  • Bers DM (2001) Excitation-contraction coupling and cardiac contractile force, 2nd edn. Kluwer, Dordrecht, Netherlands

    Book  Google Scholar 

  • Bers DM (2002) Cardiac excitation-contraction coupling. Nature 415:198–205

    Article  PubMed  CAS  Google Scholar 

  • Defer N, Best-Belpomme M, Hanoune J (2000) Tissue specificity and physiological relevance of various isoforms of adenylyl cyclase. Am J Physiol 279:F400–F416

    CAS  Google Scholar 

  • Dhein S, Van Koppen CJ, Brodde OE (2001) Muscarinic receptors in the mammalian heart. Pharmacol Res 44:161–182

    Article  PubMed  CAS  Google Scholar 

  • DiFrancesco D (2010) The role of the funny current in pacemaker activity. Circ Res 106:434–446

    Article  PubMed  CAS  Google Scholar 

  • DiFrancesco D, Tortora P (1991) Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 351:145–147

    Article  PubMed  CAS  Google Scholar 

  • Dinerman JL, Lowenstein CJ, Snyder SH (1993) Molecular mechanisms of nitric oxide regulation: potential relevance to cardiovascular disease. Circ Res 73:217–222

    PubMed  CAS  Google Scholar 

  • Eglen RM, Whiting RL (1990) Heterogeneity of vascular muscarinic receptors. J Auton Pharmacol 10:233–245

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Hegde SS, Watson N (1996) Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48:531–565

    PubMed  CAS  Google Scholar 

  • Ehara T, Mitsuiye T (1984) Adrenergic-cholinergic interactions on membrane potential of K+-depolarized ventricular muscle. Am J Physiol 247:H244–H250

    PubMed  CAS  Google Scholar 

  • Endoh M (1999) Muscarinic regulation of Ca2+ signaling in mammalian atrial and ventricular myocardium. Eur J Pharmacol 375:177–196

    Article  PubMed  CAS  Google Scholar 

  • Endoh M, Maruyama M, Iijima T (1985) Attenuation of muscarinic cholinergic inhibition by islet- activating protein in the heart. Am J Physiol 249:H309–H320

    PubMed  CAS  Google Scholar 

  • Faraci FM, Sigmund CD (1999) Vascular biology in genetically altered mice: smaller vessels, bigger insight. Circ Res 85:1214–1225

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Vanhoutte PM (1989) Endothelium-derived relaxing and contracting factors. FASEB J 3:2007–2018

    PubMed  CAS  Google Scholar 

  • Furchgott RF, Zawadzki JV (1980) The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine. Nature 288:373–376

    Article  PubMed  CAS  Google Scholar 

  • Gallo MP, Alloatti G, Eva C, Oberto A, Levi RC (1993) M1 muscarinic receptors increase calcium current and phosphoinositide turnover in guinea-pig ventricular cardiocytes. J Physiol (Lond) 471:41–60

    CAS  Google Scholar 

  • George WJ, Polson JB, O’Toole AG, Goldberg ND (1970) Elevation of guanosine 3′-5′-cyclic phosphate in rat heart after perfusion with acetylcholine. Proc Natl Acad Sci USA 66:398–403

    Article  PubMed  CAS  Google Scholar 

  • George WJ, Wilkerson RD, Kadowitz PJ (1972) Influence of acetylcholine on contractile force and cyclic nucleotide levels in the isolated perfused rat heart. J Pharmacol Exp Ther 184:228–235

    Google Scholar 

  • Gödecke A, Heinicke T, Kamkin A, Kiseleva I, Strasser RH, Decking UK, Stumpe T, Isenberg G, Schrader J (2001) Inotropic response to beta-adrenergic receptor stimulation and anti- adrenergic effect of ACh in endothelial NO synthase-deficient mouse hearts. J Physiol (Lond) 532:195–204

    Article  Google Scholar 

  • Gupta RC, Neumann J, Boknik P, Watanabe AM (1994) M2-specific muscarinic cholinergic receptor-mediated inhibition of cardiac regulatory protein phosphorylation. Am J Physiol 266:H1138–H1144

    PubMed  CAS  Google Scholar 

  • Hartzell HC (1988) Regulation of cardiac ion channels by catecholamines, acetylcholine and second messenger systems. Prog Biophys Mol Biol 52:165–247

    Article  PubMed  CAS  Google Scholar 

  • Harvey RD, Belevych AE (2003) Muscarinic regulation of cardiac ion channels. Br J Pharmacol 139:1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Hashimoto N, Yamashita T, Tsuruzoe N (2006) Tertiapin, a selective IKACh blocker, terminates atrial fibrillation with selective atrial effective refractory period prolongation. Pharmacol Res 54:136–141

    Article  PubMed  CAS  Google Scholar 

  • Hirst GD, Edwards FR (1989) Sympathetic neuroeffector transmission in arteries and arterioles. Physiol Rev 69:546–604

    PubMed  CAS  Google Scholar 

  • Hofmann F, Feil R, Kleppisch T, Schlossmann J (2006) Function of cGMP-dependent protein kinases as revealed by gene deletion. Physiol Rev 86:1–23

    Article  PubMed  CAS  Google Scholar 

  • Horowitz A, Menice CB, Laporte R, Morgan KG (1996) Mechanisms of smooth muscle contraction. Physiol Rev 76:967–1003

    PubMed  CAS  Google Scholar 

  • Huang PL, Huang Z, Mashimo H, Bloch KD, Moskowitz MA, Bevan JA, Fishman MC (1995) Hypertension in mice lacking the gene for endothelial nitric oxide synthase. Nature 377:239–242

    Article  PubMed  CAS  Google Scholar 

  • Hulme EC, Birdsall NJ, Buckley NJ (1990) Muscarinic receptor subtypes. Annu Rev Pharmacol Toxicol 30:633–673

    Article  PubMed  CAS  Google Scholar 

  • Iancu RV, Jones SW, Harvey RD (2007) Compartmentation of cAMP signaling in cardiac myocytes: a computational study. Biophys J 92:3317–3331

    Article  PubMed  CAS  Google Scholar 

  • Iancu RV, Ramamurthy G, Warrier S, Nikolaev VO, Lohse MJ, Jones SW, Harvey RD (2008) Cytoplasmic cAMP concentrations in intact cardiac myocytes. Am J Physiol Cell Physiol 295:C414–C422

    Article  PubMed  CAS  Google Scholar 

  • Irisawa H, Brown HF, Giles W (1993) Cardiac pacemaking in the sinoatrial node. Physiol Rev 73:197–227

    PubMed  CAS  Google Scholar 

  • Kakinuma Y, Ando M, Kuwabara M, Katare RG, Okudela K, Kobayashi M, Sato T (2005) Acetylcholine from vagal stimulation protects cardiomyocytes against ischemia and hypoxia involving additive non-hypoxic induction of HIF-1alpha. FEBS Lett 579:2111–2118

    Article  PubMed  CAS  Google Scholar 

  • Katare RG, Ando M, Kakinuma Y, Arikawa M, Handa T, Yamasaki F, Sato T (2009) Vagal nerve stimulation prevents reperfusion injury through inhibition of opening of mitochondrial permeability transition pore independent of the bradycardiac effect. J Thorac Cardiovasc Surg 137:223–231

    Article  PubMed  CAS  Google Scholar 

  • Khurana S, Chacon I, Xie G, Yamada M, Wess J, Raufman JP, Kennedy RH (2004) Vasodilatory effects of cholinergic agonists are greatly diminished in aorta from M3R−/− mice. Eur J Pharmacol 493:127–132

    Article  PubMed  CAS  Google Scholar 

  • Koizumi K, Terui N, Kollai M, Brooks CM (1982) Functional significance of coactivation of vagal and sympathetic cardiac nerves. Proc Natl Acad Sci USA 79:2116–2120

    Article  PubMed  CAS  Google Scholar 

  • Korth M, Kuhlkamp V (1985) Muscarinic receptor-mediated increase of intracellular Na+-ion activity and force of contraction. Pflugers Arch 403:266–272

    Article  PubMed  CAS  Google Scholar 

  • Korth M, Sharma VK, Sheu SS (1988) Stimulation of muscarinic receptors raises free intracellular Ca2+ concentration in rat ventricular myocytes. Circ Res 62:1080–1087

    PubMed  CAS  Google Scholar 

  • Koumi S-I, Wasserstrom JA (1994) Acetylcholine-sensitive muscarinic K+ channels in mammalian ventricular myocytes. Am J Physiol 266:H1812–H1821

    PubMed  CAS  Google Scholar 

  • Kovoor P, Wickman K, Maguire CT, Pu W, Gehrmann J, Berul CI, Clapham DE (2001) Evaluation of the role of I(KACh) in atrial fibrillation using a mouse knockout model. J Am Coll Cardiol 37:2136–2143

    Article  PubMed  CAS  Google Scholar 

  • Krapivinsky G, Gordon EA, Wickman K, Velimirovic B, Krapivinsky L, Clapham DE (1995) The G-protein-gated atrial K+ channel IKACh is a heteromultimer of two inwardly rectifying K+-channel proteins. Nature 374:135–141

    Article  PubMed  CAS  Google Scholar 

  • Kurachi Y (1995) G protein regulation of cardiac muscarinic potassium channel. Am J Physiol 269:C821–C830

    PubMed  CAS  Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1986a) Acetylcholine activation of K+ channels in cell-free membrane of atrial cells. Am J Physiol 251:H681–H684

    PubMed  CAS  Google Scholar 

  • Kurachi Y, Nakajima T, Sugimoto T (1986b) On the mechanism of activation of muscarinic K+ channels by adenosine in isolated atrial cells: involvement of GTP-binding proteins. Pflugers Arch 407:264–274

    Article  PubMed  CAS  Google Scholar 

  • Lanzafame AA, Christopoulos A, Mitchelson F (2003) Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 9:241–260

    Article  PubMed  CAS  Google Scholar 

  • Leung RS (2009) Sleep-disordered breathing: autonomic mechanisms and arrhythmias. Prog Cardiovasc Dis 51:324–338

    Article  PubMed  Google Scholar 

  • Levy MN (1971) Sympathetic-parasympathetic interactions in the heart. Circ Res 29:437–445

    PubMed  CAS  Google Scholar 

  • Levy MN (1977) Parasympathetic control of the heart. In: Randall WC (ed) Neural regulation of the heart. Oxford University Press, New York, NY, pp 95–129

    Google Scholar 

  • Levy MN (1995) Neural control of the heart: the importance of being ignorant. J Cardiovasc Electrophysiol 6:283–293

    Article  PubMed  CAS  Google Scholar 

  • Levy MN, Martin PJ (1989) Autonomic neural control of cardiac function. In: Sperelakis N (ed) Physiology and pathophysiology of the heart, 2nd edn. Kluwer Academic, Boston, MA, pp 361–380

    Chapter  Google Scholar 

  • Li M, Zheng C, Sato T, Kawada T, Sugimachi M, Sunagawa K (2004) Vagal nerve stimulation markedly improves long-term survival after chronic heart failure in rats. Circulation 109:120–124

    Article  PubMed  Google Scholar 

  • Lindemann JP, Watanabe AM (1989) Mechanisms of adrenergic and cholinergic regulation of myocardial contractility. In: Sperelakis N (ed) Physiology and pathophysiology of the heart, 2nd edn. Kluwer Academic, Boston, MA, pp 423–452

    Chapter  Google Scholar 

  • Löffelholz K, Pappano AJ (1985) The parasympathetic neuroeffector junction of the heart. Pharmacol Rev 37:1–24

    PubMed  Google Scholar 

  • Lyashkov AE, Vinogradova TM, Zahanich I, Li Y, Younes A, Nuss HB, Spurgeon HA, Maltsev VA, Lakatta EG (2009) Cholinergic receptor signaling modulates spontaneous firing of sinoatrial nodal cells via integrated effects on PKA-dependent Ca(2+) cycling and I(KACh). Am J Physiol Heart Circ Physiol 297:H949–H959

    Article  PubMed  CAS  Google Scholar 

  • Martin P (1977) The influence of the parasympathetic nervous system on atrioventricular conduction. Circ Res 41:593–599

    PubMed  CAS  Google Scholar 

  • Matsumoto K, Pappano AJ (1989) Sodium-dependent membrane current induced by carbachol in single guinea-pig ventricular myocytes. J Physiol (Lond) 415:487–502

    CAS  Google Scholar 

  • Matsumoto K, Pappano AJ (1991) Carbachol activates a novel sodium current in isolated guinea pig ventricular myocytes via M2 muscarinic receptors. Mol Pharmacol 39:359–363

    PubMed  CAS  Google Scholar 

  • Méry P-F, Abi-Gerges N, Vandecasteele G, Jurevicius J, Eschenhagen T, Fischmeister R (1997) Muscarinic regulation of the L-type calcium current in isolated cardiac myocytes. Life Sci 60:1113–1120

    Article  PubMed  Google Scholar 

  • Nishimura M, Habuchi Y, Hiromasa S, Watanabe Y (1988) Ionic basis of depressed automaticity and conduction by acetylcholine in rabbit AV node. Am J Physiol 255:H7–H14

    PubMed  CAS  Google Scholar 

  • Paton JF, Boscan P, Pickering AE, Nalivaiko E (2005) The yin and yang of cardiac autonomic control: vago-sympathetic interactions revisited. Brain Res Brain Res Rev 49:555–565

    Article  PubMed  CAS  Google Scholar 

  • Pfaffinger PJ, Martin JM, Hunter DD, Nathanson NM, Hille B (1985) GTP-binding proteins couple cardiac muscarinic receptors to a K channel. Nature 317:536–538

    Article  PubMed  CAS  Google Scholar 

  • Pfeifer A, Klatt P, Massberg S, Ny L, Sausbier M, Hirneiss C, Wang GX, Korth M, Aszodi A, Andersson KE, Krombach F, Mayerhofer A, Ruth P, Fassler R, Hofmann F (1998) Defective smooth muscle regulation in cGMP kinase I-deficient mice. EMBO J 17:3045–3051

    Article  PubMed  CAS  Google Scholar 

  • Saeki T, Shen JB, Pappano AJ (1997) Carbachol promotes Na+ entry and augments Na/Ca exchange current in guinea pig ventricular myocytes. Am J Physiol 273:H1984–H1993

    PubMed  CAS  Google Scholar 

  • Sakmann B, Noma A, Trautwein W (1983) Acetylcholine activation of single muscarinic K+ channels in isolated pacemaker cells of the mammalian heart. Nature 303:250–253

    Article  PubMed  CAS  Google Scholar 

  • Sharma VK, Colecraft HM, Wang DX, Levey AI, Grigorenko EV, Yeh HH, Sheu SS (1996) Molecular and functional identification of m1 muscarinic acetylcholine receptors in rat ventricular myocytes. Circ Res 79:86–93

    PubMed  CAS  Google Scholar 

  • Soejima M, Noma A (1984) Mode of regulation of the Ach-sensitive K-channel by the muscarinic receptor in rabbit atrial cells. Pflugers Arch 400:424–431

    Article  PubMed  CAS  Google Scholar 

  • Song Y, Shryock JC, Belardinelli L (1998) Potentiating effect of acetylcholine on stimulation by isoproterenol of L-type Ca2+ current and arrhythmogenic triggered activity in guinea pig ventricular myocytes. J Cardiovasc Electrophysiol 9:718–726

    Article  PubMed  CAS  Google Scholar 

  • Standish A, Enquist LW, Schwaber JS (1994) Innervation of the heart and its central meduallary origin defined by viral tracing. Science 263:232–234

    Article  PubMed  CAS  Google Scholar 

  • Standish A, Enquist LW, Escardo JA, Schwaber JS (1995) Central neuronal circuit innervating the rat heart defined by transneuronal transport of pseudorabies virus. J Neurosci 15:1998–2012

    PubMed  CAS  Google Scholar 

  • Stemmer PM, Ledyard TH, Watanabe AM (2000) Protein dephosphorylation rates in myocytes after isoproterenol withdrawal. Biochem Pharmacol 59:1513–1519

    Article  PubMed  CAS  Google Scholar 

  • Stengel PW, Gomeza J, Wess J, Cohen ML (2000) M(2) and M(4) receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885

    PubMed  CAS  Google Scholar 

  • Sunahara RK, Taussig R (2002) Isoforms of mammalian adenylyl cyclase: multiplicities of signaling. Mol Interv 2:168–184

    Article  PubMed  CAS  Google Scholar 

  • Sunahara RK, Dessauer CW, Gilman AG (1996) Complexity and diversity of mammalian adenylyl cyclases. Annu Rev Pharmacol Toxicol 36:461–480

    Article  PubMed  CAS  Google Scholar 

  • Ten Eick RE, Nawrath J, McDonald RF, Trautwein W (1976) On the mechanism of the negative inotropic effect of acetylcholine. Pflugers Arch 361:207–213

    Article  PubMed  Google Scholar 

  • Vandecasteele G, Eschenhagen T, Scholz H, Stein B, Verde I, Fischmeister R (1999) Muscarinic and beta-adrenergic regulation of heart rate, force of contraction and calcium current is preserved in mice lacking endothelial nitric oxide synthase. Nat Med 5:331–334

    Article  PubMed  CAS  Google Scholar 

  • Vanhoutte PM, Shepherd JT (1983) Muscarinic and beta-adrenergic prejunctional modulation of adrenergic neurotransmission in the blood vessel wall. Gen Pharmacol 14:35–37

    Article  PubMed  CAS  Google Scholar 

  • Wang YG, Lipsius SL (1996) A cellular mechanism contributing to post-vagal tachycardia studied in isolated pacemaker cells from cat right atrium. Circ Res 79:109–114

    PubMed  CAS  Google Scholar 

  • Wang YG, Rechenmacher CE, Lipsius SL (1998) Nitric oxide signaling mediates stimulation of L-type Ca2+ current elicited by withdrawal of acetylcholine in cat atrial myocytes. J Gen Physiol 111:113–125

    Article  PubMed  CAS  Google Scholar 

  • Wang Z, Shi H, Wang H (2004) Functional M3 muscarinic acetylcholine receptors in mammalian hearts. Br J Pharmacol 142:395–408

    Article  PubMed  CAS  Google Scholar 

  • Warrier S, Belevych AE, Ruse M, Eckert RL, Zaccolo M, Pozzan T, Harvey RD (2005) Beta-adrenergic and muscarinic receptor induced changes in cAMP activity in adult cardiac myocytes detected using a FRET based biosensor. Am J Physiol 289:C455–C461

    Article  CAS  Google Scholar 

  • Watanabe AM, Besch HR (1975) Interaction between cyclic adenosine monophosphate and cyclic guanosine monophosphate in guinea pig ventricular myocardium. Circ Res 37:309–317

    PubMed  CAS  Google Scholar 

  • Yamada M, Lamping KG, Duttaroy A, Zhang W, Cui Y, Bymaster FP, McKinzie DL, Felder CC, Deng CX, Faraci FM, Wess J (2001) Cholinergic dilation of cerebral blood vessels is abolished in M(5) muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 98:14096–14101

    Article  PubMed  CAS  Google Scholar 

  • Zakharov SI, Harvey RD (1997) Rebound stimulation of the cAMP-regulated Cl- current by acetylcholine in guinea-pig ventricular myocytes. J Physiol (Lond) 499:105–120

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert D. Harvey .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Harvey, R.D. (2012). Muscarinic Receptor Agonists and Antagonists: Effects on Cardiovascular Function. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_13

Download citation

Publish with us

Policies and ethics