Skip to main content

Overview of Muscarinic Receptor Subtypes

  • Chapter
  • First Online:
Muscarinic Receptors

Part of the book series: Handbook of Experimental Pharmacology ((HEP,volume 208))

Abstract

The physiological role of muscarinic receptors is highly complex and, although not completely understood, has become clearer over the last decade. Recent pharmacological evidence with novel compounds, together with data from transgenic mice, suggests that all five subtypes have defined functions in the nervous system as well as mediating the non neuronal, hormonal actions of acetylcholine. Numerous novel agonists, allosteric regulators, and antagonists have now been identified with authentic subtype specificity in vitro and in vivo. These compounds provide additional pharmacological opportunities for selective subtype modulation as well as a new generation of muscarinic receptor-based therapeutics.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrams P, Andersson KE, Buccafusco JJ, Chapple C, de Groat WC, Fryer AD, Kay G, Laties A, Nathanson NM, Pasricha PJ, Wein AJ (2006) Muscarinic receptors: their distribution and function in body systems, and the implications for treating overactive bladder. Br J Pharmacol 148(565–578):2006

    Google Scholar 

  • Aiyar J, Steinfeld T, Pulido-Rios MT, Chin K, Lee TW, Jasper J, Thomas R, Hegde S, Mammen M (2009) In vitro characterization of TD-5959: a novel bifunctional molecule with muscarinic antagonist and β2-adrenergic agonist activity. Am J Respir Crit Care Med 179:A4552

    Google Scholar 

  • Alifano A, Cuvelier A, Delage A, Roche N, Lamia B, Molano LC, Couderc L-J, Marquette C-H, Devillier P (2010) Treatment of COPD: from pharmacological to instrumental therapies. Eur Respir Rev 19:7–23

    Article  PubMed  CAS  Google Scholar 

  • Anagnostaras SG, Murphy GG, Hamilton SE, Mitchell SL, Rahnama NP, Nathanson NM, Silva AJ (2003) Selective cognitive dysfunction in acetylcholine M1 muscarinic receptor mutant mice. Nat Neurosci 6:51–58

    Article  PubMed  CAS  Google Scholar 

  • Andersson K-E (1993) Pharmacology of lower urinary tract smooth muscles and penile erectile tissues. Pharmacol Rev 45:253–308

    Google Scholar 

  • Andersson K-E (2003) Antimuscarinics for treatment of overactive bladder. Lancet 3:46–53

    Article  Google Scholar 

  • Antony J, Kellershohn K, Mohr-Andra M, Kebig A, Prilla S, Muth M, Heller E, Disingrini T, Dallanoce C, Bertoni S, Schrobang J, Trankle C, Kostenis E, Christopoulos C, Holtje H-D, Barocelli E, De Amici M, Holzgrabe U, Mohr K (2009) Dualsteric GPCR targeting: a novel route to binding and signaling pathway selectivity. FASEB J 23:442–450

    Article  PubMed  CAS  Google Scholar 

  • Araya R, Noguchi T, Yuhki M, Kitamura N, Higuchi M, Saido TC, Seki K, Itohara S, Kawano M, Tanemura K, Takashima A, Yamada K, Kondoh Y, Kanno I, Wess J, Yamada M (2006) Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis 24:334–344

    Article  PubMed  CAS  Google Scholar 

  • Barlow RB, Berry KJ, Glenton PA, Nilolaou NM, Soh KS (1976) A comparison of affinity constants for muscarine-sensitive acetylcholine receptors in guinea-pig atrial pacemaker cells at 29°C and in ileum at 29°C and 37°C. Br J Pharmacol 58:613–620

    PubMed  CAS  Google Scholar 

  • Bartus RT, Dean RL, Beer B, Lippa AS (1982) The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–411

    Article  PubMed  CAS  Google Scholar 

  • Basile AS, Fedorova I, Zapata A, Liu X, Shippenberg T, Alokesh Duttaroy A, Yamada AM, Wess J (2002) Deletion of the M5 muscarinic acetylcholine receptor attenuates morphine reinforcement and withdrawal but not morphine analgesia. Proc Natl Acad Sci USA 99:11452–11457

    Article  PubMed  CAS  Google Scholar 

  • Ben-Chaim Y, Tour O, Dscal N, Parnas I, Parnas H (2003) The M2 muscarinic G-protein-coupled receptor is voltage-sensitive. J Biol Chem 278:22482–22491

    Article  PubMed  CAS  Google Scholar 

  • Birdsall NJM, Lazareno S (2005) Allosterism at muscarinic receptors: ligands and mechanisms. Mini Rev Med Chem 5:523–543

    Article  PubMed  CAS  Google Scholar 

  • Bohme TM, Angelli-Szafran CE, Corinne E, Hallak H, Schwarz RD (2002) Analogs of M4 selective synthetic muscarinic receptor antagonists: synthesis, binding and pharmacokinetic properties. Med Chem Res 11:423–433

    Google Scholar 

  • Bohme TM, Keim C, Kreutzmann K, Linder M, Dingermann T, Dannhardt G, Mutschler E, Lambrecht G (2003) Structure-activity relationships of dimethindene derivatives as new M2-selective muscarinic receptor antagonists. J Med Chem 46:856–867

    Article  PubMed  CAS  Google Scholar 

  • Bonner TI, Buckley NJ, Young AC, Brann MR (1987) Identification of a family of muscarinic acetylcholine receptor genes. Science 237:527–532

    Article  PubMed  CAS  Google Scholar 

  • Boyle CD, Lachowicz JE (2002) Orally active and selective benzylidene ketal M2 muscarinic receptor antagonists for the treatment of Alzheimer’s disease. Drug Dev Res 56:310–320

    Article  CAS  Google Scholar 

  • Bradley SR, Lameh J, Ohrmund L, Son T, Bajpai A, Nguyen D, Friberg M, Burstein ES, Spalding TA, Ott TR, Schiffer HH, Tabatabaei A, McFarland K, Davis RE, Bonhaus DW (2010) AC-260584, an orally bioavailable M(1) muscarinic receptor allosteric agonist, improves cognitive performance in an animal model. Neuropharmacology 58:365–373

    Article  PubMed  CAS  Google Scholar 

  • Brady AE, Jones CK, Bridges TM, Kennedy JP, Thompson AD, Heiman JU, Breininger ML, Gentry PR, Yin H, Jadhav SB, Shirey JK, Conn PJ, Lindsley CW (2008) Centrally active allosteric potentiators of the M4 muscarinic acetylcholine receptor reverse amphetamineinduced hyperlocomotor activity in rats. J Pharmacol Exp Ther 327:941–953

    Article  PubMed  CAS  Google Scholar 

  • Bridges TM, Marlo JE, Niswender CM, Jones CK, Jadhav SB, Gentry PR, Plumley HC, Weaver CD, Conn PJ, Lindsley CW (2009) Discovery of the first highly M5-preferring muscarinic acetylcholine receptor ligand, an M5 positive allosteric modulator derived from a series of 5-trifluoromethoxy N-benzyl isatins. J Med Chem 52:3445–3448

    Article  PubMed  CAS  Google Scholar 

  • Bridges TM, Kennedy JP, Cho HP, Breininger ML, Gentry PR, Hopkins CR, Conn PJ, Lindsley CW (2010) Chemical lead optimization of a pan G(q) mAChR M(1), M(3), M(5) positive allosteric modulator (PAM) lead. Part I: development of the first highly selective M(5) PAM. Bioorg Med Chem Lett 20:558–562

    Article  PubMed  CAS  Google Scholar 

  • Budzik B, Garzya V, Shi D, Walker G, Lauchart Y, Lucas AJ, Rivero RA, Langmead CJ, Watson J, Wu Z, Forbes IT, Jin J (2010) 2′ Biaryl amides as novel and subtype selective M1 agonists. Part II: further optimization and profiling. Bioorg Med Chem Lett 20:3545–3549

    Article  PubMed  CAS  Google Scholar 

  • Bymaster FP, Felder C, Ahmed S, McKinzie D (2002) Muscarinic receptors as a target for drugs treating schizophrenia. Curr Drug Targets CNS Neurol Disord 1:163–181

    Article  PubMed  CAS  Google Scholar 

  • Cannon DM, Klaver JK, Gandhi SK, Solorio G, Peck SA, Erickson K, Savitz J, Akula N, Eckelman WC, Furey ML, Sahakian BJ, McMahon FJ, Drevets WC (2010) Genetic variation in cholinergic muscarinic-2 receptor gene modulates M2 receptor binding in vivo and accounts for reduced binding in bipolar disorder. Mol Psychiatry 16(4):407–418

    Article  PubMed  CAS  Google Scholar 

  • Casarosa P, Bouyssou T, Germeyer S, Schnapp A, Gantner F, Pieper M (2009) Preclinical evaluation of long-acting muscarinic antagonists: comparison of tiotropium and investigational drugs. J Pharmacol Exp Ther 330:660–668

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP (1993) Muscarinic receptors – characterization, coupling and function. Pharmacol Ther 58:319–379

    Article  PubMed  CAS  Google Scholar 

  • Caulfield MP, Birdsall NJM (1998) International union of pharmacology. XVII. Classification of muscarinic acetylcholine receptors. Pharmacol Rev 50:279–290

    PubMed  CAS  Google Scholar 

  • Chan WY, McKinzie DL, Bose S, Mitchell N, Witkin JM, Thompson RC, Christopoulos A, Lazareno S, Birdsall NJM, Bymaster FP, Felder CC (2008) Allosteric modulation of the muscarinic M4 receptor as an approach to treating schizophrenia. Proc Natl Acad Sci USA 105:110978–110983

    Google Scholar 

  • Chen S-R, Wess J, Pan H-L (2005) Functional activity of the M2 and M4 receptor subtypes in the spinal cord studied with muscarinic acetylcholine receptor knockout mice. J Pharmacol Exp Ther 313:765–770

    Article  PubMed  CAS  Google Scholar 

  • Chess-Williams R (2002) Muscarinic receptors of the urinary bladder: detrusor, urothelial and prejunctional. Auton Autocoid Pharmacol 22:133–145

    Article  CAS  Google Scholar 

  • Citron M (2010) Alzheimer’s disease: strategies for disease modification. Nat Rev Drug Discov 9:387–398

    Article  PubMed  CAS  Google Scholar 

  • Clader JW, Wang Y (2005) Muscarinic agonists and antagonists in the treatment of Alzheimer’s disease. Curr Pharm Des 11:3353–3361

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Jones CK, Lindsley CW (2009a) Subtype-selective allosteric modulators of muscarinic receptors for the treatment of CNS disorders. Trends Pharmacol Sci 30:148–155

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Christopoulos C, Lindsley CW (2009b) Allosteric modulators of GPCRs: a novel approach for the treatment of CNS disorders. Nat Rev Drug Discov 8:41–54

    Article  PubMed  CAS  Google Scholar 

  • Davis AA, Fritz JJ, Wess J, Lah JJ, Levey AI (2010) Deletion of M1 muscarinic acetylcholine receptors increases amyloid pathology in vitro and in vivo. J Neurosci 30:4190–4196

    Article  PubMed  CAS  Google Scholar 

  • Doggrell SA, Evans S (2003) Treatment of dementia with neurotransmission modulation. Expet Opin Investig Drugs 12:1633–1654

    Article  CAS  Google Scholar 

  • Dorje F, Wess J, Lambrecht G, Tacke R, Mutschler E, Brann MR (1990) Antagonist binding profiles of five cloned human muscarinic receptor subtypes. J Pharmacol Exp Ther 256:727–733

    Google Scholar 

  • Eglen RM (2005) Muscarinic receptor subtype pharmacology and physiology. Prog Med Chem 43:105–136

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM (2006) Muscarinic receptor subtypes in neuronal and non-neuronal cholinergic function. Auton Autacoid Pharmacol 26:219–233

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Nahorski SR (2000) The muscarinic M5 receptor: a silent or emerging subtype? Br J Pharmacol 130:13–21

    Article  PubMed  CAS  Google Scholar 

  • Eglen RM, Hegde SS, Watson N (1996) Muscarinic receptor subtypes and smooth muscle function. Pharmacol Rev 48:531–565

    PubMed  CAS  Google Scholar 

  • Eglen RM, Bosse R, Reisine T (2007) Emerging concepts of guanine nucleotide-binding protein-coupled receptor (GPCR) function and implications for high throughput screening. Assay Drug Dev Technol 5:425–452

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ (2003) Pharmacological analysis of the contractile role of M2 and M3 muscarinic receptors in smooth muscle. Receptors Channels 9:261–277

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ (2008) On the analysis of ligand-directed signaling at G protein-coupled receptors. Naunyn Schmiedebergs Arch Pharmacol 377:549–577

    Article  PubMed  CAS  Google Scholar 

  • Ehlert FJ, Griffin MT, Abe DM, Vo TH, Taketo MM, Manabe T, Matsui M (2005) The M2 muscarinic receptor mediates contraction through indirect mechanisms in mouse urinary bladder. J Pharmacol Exp Ther 313:368–378

    Article  PubMed  CAS  Google Scholar 

  • Elhusseiny A, Hamel E (2000) Muscarinic – but not nicotinic – receptors mediate acetylcholine dilation of human and bovine intracortical arterioles: involvement of nitric oxide and the m5 receptor subtype. J Cereb Blood Flow Metab 20:298–305

    Article  PubMed  CAS  Google Scholar 

  • Elhusseiny A, Cohen Z, Olivier A, Stanimirovic D, Hamel E (1999) Functional acetylcholine muscarinic receptor subtypes in human brain microcirculation: identification and cellular localization. J Cereb Blood Flow Metab 19:794–802

    Article  PubMed  CAS  Google Scholar 

  • Felder CC, Bymaster FP, Ward J, DeLapp N (2000) Therapeutic opportunities for muscarinic receptors in the central nervous system. J Med Chem 43:4333–4353

    Article  PubMed  CAS  Google Scholar 

  • Figueroa FW, Griffin MT, Ehlert FJ (2009) Selectivity of agonists for the active state of M1 to M4 muscarinic receptor subtypes. J Pharmacol Exp Ther 328:331–342

    Article  PubMed  CAS  Google Scholar 

  • Fink-Jensen A, Fedorova I, Wortwein G, Woldbye DP, Rasmussen T, Thomsen M, Bolwig TG, Knitowski KM, McKinzie DL, Yamada M, Wess J, Basile A (2003) Role for M5 muscarinic acetylcholine receptors in cocaine addiction. J Neurosci Res 74:91–96

    Article  PubMed  CAS  Google Scholar 

  • Fisher A (2008) M1 muscarinic agonists target major hallmarks of Alzheimer’s disease – the pivotal role of brain M1 receptors. Neurodegener Dis 5:237–240

    Article  PubMed  CAS  Google Scholar 

  • Fisher A, Brandeis R, Haring R, Bar-Ner N, Kliger-Spatz M, Natan N, Sonego H, Marcovitch I, Pittel Z (2002) Impact of muscarinic agonists for successful therapy of Alzheimer’s disease. J Neural Transm Suppl 62:189–202

    PubMed  CAS  Google Scholar 

  • Fisher A, Pittel Z, Haring R, Bar-Ner N, Kliger-Spatz M, Natan N, Egozi I, Sonego H, Marcovitch I, Brandeis R (2003) M1 muscarinic agonists can modulate some of the hallmarks in Alzheimer’s disease: implications in future therapy. J Mol Neurosci 20:349–356

    Article  PubMed  CAS  Google Scholar 

  • Fowler CJ, Griffiths D, de Groat WC (2008) The neural control of micturition. Nat Rev Neurosci 9:453–466

    Article  PubMed  CAS  Google Scholar 

  • Fox RI, Konttinen Y, Fisher A (2001) Use of muscarinic agonists in the treatment of Sjögren’s syndrome. Clin Immunol 101:249–263

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Jeon J, Li JH, Han S-J, Hamdan FF, Cui Y, Lu H, Deng C, Gavrilov O, Wess J (2008) Metabolic roles of the M3 muscarinic acetylcholine receptor studied with M3 receptor mutant mice: a review. J Recept Signal Transduct Res 28:93–108

    Article  PubMed  CAS  Google Scholar 

  • Gautam D, Jeon J, Starost MF, Han S-J, Hamdan FF, Cui Y, Parlow AF, Gavrilova O, Szalayova I, Mezey E, Wess J (2009) Neuronal M3 muscarinic acetylcholine receptors are essential for somatotroph proliferation and normal somatic growth. Proc Natl Acad Sci USA 106:6398–6403

    Article  PubMed  CAS  Google Scholar 

  • Giglio D, Tobin G (2009) Muscarinic receptor subtypes in the lower urinary tract. Pharmacology 83:259–269

    Article  PubMed  CAS  Google Scholar 

  • Gomeza J, Zhang L, Kostenis E, Felder C, Bymaster F, Brodkin J, Shannon H, Xia B, Deng D-X, Wess J (1999) Enhancement of D1 dopamine receptor-mediated locomotor stimulation in M4 muscarinic acetylcholine receptor knockout mice. Proc Natl Acad Sci USA 96:10483–10488

    Article  PubMed  CAS  Google Scholar 

  • Grando SA, Kawashima K, Kirkpatrick CJ, Wessler I (2007) Recent progress in understanding the non-neuronal cholinergic system in humans. Life Sci 80:2181–2185

    Article  PubMed  CAS  Google Scholar 

  • Gregory KJ, Hall NE, Tobin AB, Sexton PM, Christopoulos A (2010) Identification of orthosteric and allosteric site mutations in M2 muscarinic acetylcholine receptors that contribute to ligand-selective signaling bias. J Biol Chem 285:7459–7474

    Article  PubMed  CAS  Google Scholar 

  • Griffin MT, Matsui M, Shehnaz D, Ansari KZ, Taketo MM, Manabe T, Ehlert FJ (2004) Muscarinic agonist-mediated heterologous desensitization in isolated ileum requires activation of both muscarinic M2 and M3 receptors. J Pharmacol Exp Ther 308:339–349

    Article  PubMed  CAS  Google Scholar 

  • Griffin MT, Matsui M, Ostrom RS, Ehlert FJ (2009) The guinea pig ileum lacks the direct, high-potency, M2-muscarinic, contractile mechanism characteristic of the mouse ileum. Naunyn Schmiedebergs Arch Pharmacol 380:327–335

    Article  PubMed  CAS  Google Scholar 

  • Hammer R, Berrie CP, Birdsall NJ, Burgen AS, Hulme EC (1980) Pirenzepine distinguishes between different subclasses of muscarinic receptors. Nature 283:90–92

    Article  PubMed  CAS  Google Scholar 

  • Hansel TT, Barnes PJ (2002) Tiotropium bromide: a novel once-daily anticholinergic bronchodilator for the treatment of COPD. Drugs Today 38:585–600

    Article  PubMed  CAS  Google Scholar 

  • Harvey RD, Belevych AE (2003) Muscarinic regulation of cardiac ion channels. Br J Pharmacol 139:1074–1084

    Article  PubMed  CAS  Google Scholar 

  • Hegde SS (2006) Muscarinic receptors in the bladder: from basic research to therapeutics. Br J Pharmacol 147(Suppl 2):S80–S87

    Article  PubMed  CAS  Google Scholar 

  • Heinrich JN, Butera JA, Carrick T, Kramer A, Kowal D, Lock T, Marquis KL, Pausch MH, Popiolek M, Sun SC, Tseng E, Uveges AJ, Mayer SC (2009) Pharmacological comparison of muscarinic ligands: historical versus more recent muscarinic M1-preferring receptor agonists. Eur J Pharmacol 605:53–56

    Article  PubMed  CAS  Google Scholar 

  • Hemrich-Luecke SK, Bymaster FP, Evans DC, Wess J, Felder CC (2002) Muscarinic agonist-mediated increases in serum corticosterone levels are abolished in M2 muscarinic acetylcholine receptor knockout mice. J Pharmacol Exp Ther 303:99–103

    Article  CAS  Google Scholar 

  • Hern JA, Baig AH, Mashanov GI, Birdsall B, Corrie JET, Lazareno S, Molloy JE, Birdsall NJM (2010) Formation and dissociation of M1 muscarinic receptor dimers seen by total internal reflection fluorescence imaging of single molecules. Proc Natl Acad Sci USA 107:2693–2698

    Article  PubMed  CAS  Google Scholar 

  • Hernandez CCQ, Barcellos LC, Gimenez L, Diaz E, Cabarcas RAB, Garcia S, Pedrosa RC, Nascimento JHM, Kurtenbach E, Mmasuda MO, Campos de Carvalho AC (2003) Human chagasic IgGs bind to cardiac muscarinic receptors and impair L-type Ca2+ currents. Cardiovasc Res 58:55–65

    Article  PubMed  CAS  Google Scholar 

  • Himmel HM, Pietsch M, Uwe G, Eva M, Ravens U (2002) Changes in morphology and inward rectifier currents in human atrial myocytes depend on culture conditions. Basic Res Cardiol 97:434–444

    Article  PubMed  CAS  Google Scholar 

  • Hock C, Maddalena A, Raschig A, Muller-Spahn F, Eschweiler G, Hager K, Heuser I, Hampel H, Muller-Thomsen T, Oertel W, Wienrich M, Signorell A, Gonzalez-Agosti C, Nitsch RM (2003) Treatment with the selective muscarinic m1 agonist talsaclidine decreases cerebrospinal fluid levels of A beta 42 in patients with Alzheimer’s disease. Amyloid 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Hulme EC, Lu ZL, Saldanha JW, Bee MS (2003) Structure and activation of muscarinic acetylcholine receptors. Biochem Soc Trans 31:29–34

    Article  PubMed  CAS  Google Scholar 

  • Jakubík J, Bacáková L, el-Fakahany EE, Tucek S (1995) Constitutive activity of the M1-M4 subtypes of muscarinic receptors in transfected CHO cells and of muscarinic receptors in the heart cells revealed by negative antagonists. FEBS Lett 377:275–279

    Article  PubMed  Google Scholar 

  • Jakubík J, Bacakova L, El-Fakahany EE, Tucek S (1997) Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol Pharmacol 52:172–179

    PubMed  Google Scholar 

  • Jakubík J, Michal P, Machová E, Dolezal V (2008) Importance and prospects for design of selective muscarinic agonists. Physiol Res 57(Suppl 3):S39–S47

    PubMed  Google Scholar 

  • Jin J, Budzik B, Wang Y, Shi D, Wang F, Xie H, Wan Z, Zhu C, Foley JJ, Webb EF, Berlanga M, Burman M, Sarau HM, Morrow DM, Moore ML, Rivero RA, Palovich M, Salmon M, Belmonte KE, Lain DI (2008) Discovery of biphenyl piperazines as novel and long acting muscarinic acetylcholine receptor antagonists. J Med Chem 51:5915–5918

    Article  PubMed  CAS  Google Scholar 

  • Jöhren K, Höltje HD (2002) A model of the human M2 muscarinic acetylcholine receptor. J Comput Aided Mol Des 16:795–801

    Article  PubMed  Google Scholar 

  • Jones CK, Brady AE, Davis AA, Xiang Z, Bubser M, Tantawy NM, Kane AS, Bridges TM, Kennedy JP, Bradley SR, Peterson TE, Ansari MS, Baldwin RM, Kessler RM, Deutch AY, Lah JJ, Levey AI, Lindsley CW, Conn JP (2008) Novel selective allosteric activator of the M1 muscarinic acetylcholine receptor regulates amyloid processing and produces antipsychotic-like activity in rats. J Neurosci 28:10422–10433

    Article  PubMed  CAS  Google Scholar 

  • Karlsson E, Jolkkonen M, Mulugeta E, Onali P, Adem A (2000) Snake toxins with high selectivity for subtypes of muscarinic acetylcholine receptors. Biochimie 82:793–806

    Article  PubMed  CAS  Google Scholar 

  • Kawashima K, Fujii T (2004) Expression of non-neuronal acetylcholine in lymphocytes and its contribution to the regulation of immune function. Front Biosci 9:2063–2085

    Article  PubMed  CAS  Google Scholar 

  • Kenakin T (2007) Functional selectivity through protean and biased agonism: who steers the ship? Mol Pharmacol 72:1393–1401

    Article  PubMed  CAS  Google Scholar 

  • Kenakin TP, Miller LJ (2010) Seven transmembrane receptors as shapeshifting proteins: the impact of allosteric modulation and functional selectivity on new drug discovery. Pharmacol Rev 62:265–304

    Article  PubMed  CAS  Google Scholar 

  • Kingham PJ, Costello RW, McLean WG (2003) Eosinophil and airway nerve interactions. Pulm Pharmacol Ther 16:9–13

    Article  PubMed  CAS  Google Scholar 

  • Kitazawa T, Asakawa K, Nakamura T, Teraoka H, Unno T, Komori S, Yamada M, Wess J (2009) M3 muscarinic receptors mediate positive inotropic responses in mouse atria: a study with muscarinic receptor knockout mice. J Pharmacol Exp Ther 330:487–493

    Article  PubMed  CAS  Google Scholar 

  • Kories C, Czyborra C, Fetscher C, Schneider T, Krege S, Michel MC (2003) Gender comparison of muscarinic receptor expression and function in rat and human urinary bladder: differential regulation of M2 and M3? Naunyn Schmiedebergs Arch Pharmacol 367:524–531

    Article  PubMed  CAS  Google Scholar 

  • Langmead CJ, Fry VA, Forbes IT, Branch CL, Christopoulos A, Wood MD, Herdon HJ (2006) Probing the molecular mechanism of interaction between 4-n-butyl-1-[4-(2-methylphenyl)-4-oxo-1-butyl]-piperidine (AC-42) and the muscarinic M1 receptor: direct pharmacological evidence that AC-42 is an allosteric agonist. Mol Pharmacol 2006(69):236–246

    Google Scholar 

  • Langmead CJ, Watson J, Reavill C (2008a) Muscarinic acetylcholine receptors as CNS drug targets. Pharmacol Ther 117:232–243

    Article  PubMed  CAS  Google Scholar 

  • Langmead CJ, Austin NE, Branch CL, Brown JT, Buchanan KA, Davies CH, Forbes IT, Fry VA, Hagan JJ, Herdon HJ, Jones GA, Jeggo R, Kew JN, Mazzali A, Melarange R, Patel N, Pardoe J, Randall AD, Roberts C, Roopun A, Starr KR, Teriakidis A, Wood MD, Whittington M, Wu Z, Watson J (2008b) Characterization of a CNS penetrant, selective M1 muscarinic receptor agonist, 77-LH-28-1. Br J Pharmacol 154:1104–1115

    Article  PubMed  CAS  Google Scholar 

  • Lanzafame AA, Christopoulos A, Mitchelson F (2003) Cellular signaling mechanisms for muscarinic acetylcholine receptors. Receptors Channels 9:241–260

    Article  PubMed  CAS  Google Scholar 

  • Lazareno S, Popham A, Birdsall NJM (2002) Analogs of WIN 62,577 define a second allosteric site on muscarinic receptors. Mol Pharmacol 62:1492–1505

    Article  PubMed  CAS  Google Scholar 

  • Lazareno S, Popham A, Birdsall NJM (2003) Progress toward a high-affinity allosteric enhancer at muscarinic M1 receptors. J Mol Neurosci 20:363–367

    Article  PubMed  CAS  Google Scholar 

  • Levey AI (1993) Immunological localization of m1–m5 muscarinic acetylcholine receptors in peripheral tissues and brain. Life Sci 52:441–448

    Article  PubMed  CAS  Google Scholar 

  • Liao D-L, Hong C-J, Chen H-M, Chen Y-E, Lee S-M, Chang C-Y, Chen H, Tsai S-J (2003) Association of muscarinic m1 receptor genetic polymorphisms with psychiatric symptoms and cognitive function in schizophrenic patients. Neuropsychobiology 48:72–76

    Article  PubMed  CAS  Google Scholar 

  • Ma L, Seagera MA, Wittmanna M, Jacobsonb M, Bickela D, Burnoa M, Jones K, Kuzmick Graufeldsa V, Xua G, Pearsona M, McCampbella A, Gasparc R, Shughruec P, Danzigerc A, Reganc C, Flickb R, Pascarellab D, Garsond S, Dorand S, Kreatsoulase C, Vengc L, Lindsleye CW, Shipee W, Kuduke S, Surf C, Kinneyc G, Seabrooka GR, Ray WJ (2009) Selective activation of the M1 muscarinic acetylcholine receptor achieved by allosteric potentiation. Proc Natl Acad Sci USA 106:15950–15955

    Article  PubMed  CAS  Google Scholar 

  • Maltais F, Celli B, Porszasz J, Casaburi R, Gil EG, Caracta C (2010) Aclidinium bromide improves exercise endurance, dyspnea and inspiratory capacity in patients with moderate to severe COPD. Am J Respir Crit Care Med 181:A4428

    Google Scholar 

  • Mansfield KJ, Mitchelson FJ, Moore KH, Burcher E (2003) Muscarinic receptor subtypes in the human colon: lack of evidence for atypical subtypes. Eur J Pharmacol 482:101–109

    Article  PubMed  CAS  Google Scholar 

  • Mansfield KJ, Chandran JJ, Vaux KJ, Millard RJ, Christopoulos A, Mitchelson FJ, Burcher E (2009) Comparison of receptor binding characteristics of commonly used muscarinic antagonists in human bladder detrusor and mucosa. J Pharmacol Exp Ther 328:893–899

    Article  PubMed  CAS  Google Scholar 

  • Marlo JE, Niswender CM, Days EL, Bridges TM, Xiang Y, Rodriguez AL, Shirey JK, Brady AE, Nalywajko T, Luo Q, Austin CA, Williams MB, Kim K, Williams R, Orton D, Brown HA, Lindsley CW, Weaver CD, Conn PJ (2009) Discovery and characterization of novel allosteric potentiators of M1 muscarinic receptors reveals multiple modes of activity. Mol Pharmacol 75:577–588

    Article  PubMed  CAS  Google Scholar 

  • Matsui M, Motomura D, Kurarsawa H, Fujikawa T, Jiang J, Yuriko K, Shin-ichi T, Makoto MT (2000) Multiple functional defects in peripheral autonomic organs in mice lacking muscarinic acetylcholine receptor gene for the M3 subtype. Proc Natl Acad Sci USA 97:9579–9584

    Article  PubMed  CAS  Google Scholar 

  • May LT, Avlani VA, Langmead CJ, Herdon HJ, Wood MD, Sexton PM, Christopoulos A (2007) Structure-function studies of allosteric agonism at M2 muscarinic acetylcholine receptors. Mol Pharmacol 72:463–476

    Article  PubMed  CAS  Google Scholar 

  • Mei L, Lai J, Yamamura HI, Roeske WR (1989) The relationship between agonist states of the M1 muscarinic receptor and the hydrolysis of inositol lipids in transfected murine fibroblast cells (B82) expressing different receptor densities. J Pharmacol Exp Ther 251:90–97

    PubMed  CAS  Google Scholar 

  • Michel MC (2008) Fesoterodine: a novel muscarinic receptor antagonist for the treatment of overactive bladder syndrome. Expert Opin Pharmacother 9:1787–1796

    Article  PubMed  CAS  Google Scholar 

  • Michel AD, Whiting RL (1987) Direct binding studies on ileal and cardiac muscarinic receptors. Br J Pharmacol 92:755–767

    PubMed  CAS  Google Scholar 

  • Mirza NR, Peters D, Sparks RG (2003) Xanomeline and the anti-psychotic potential of muscarinic receptor subtype selective agonists. CNS Drug Rev 9:159–186

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa T, Yamada M, Duttaroy A, Wess J (2001) Hyperactivity and intact hippocampus-dependent learning in mice lacking the M1 muscarinic acetylcholine receptor. Proc Natl Acad Sci USA 98:14096–14101

    Article  Google Scholar 

  • Miyamae K, Yoshida M, Murakami S, Iwashita H, Ohtani M, Masunaga K, Ueda S (2003) Pharmacological effects of darifenacin on human isolated urinary bladder. Pharmacology 69:205–211

    Article  PubMed  CAS  Google Scholar 

  • Mohr K, Tränkle C, Holzgrabe U (2003) Structure/activity relationships of M2 muscarinic allosteric modulators. Receptors Channels 9:229–240

    Article  PubMed  CAS  Google Scholar 

  • Mohr M, Tränkle C, Kostenis E, Barocelli E, De Amici M, Holzgrabe U (2010) Rational design of dualsteric GPCR ligands: quests and promise. Br J Pharmacol 159:997–1008

    Article  PubMed  CAS  Google Scholar 

  • Moreno L, Jacoby DB, Fryer AD (2003) Dexamethasone prevents virus-induced hyperresponsiveness via multiple mechanisms. Am J Physiol 285:L451–L455

    CAS  Google Scholar 

  • Nawaratne V, Leach K, Felder CC, Sexton PM, Christopoulos C (2010) Structural determinants of allosteric agonism and modulation at the M4 muscarinic acetylcholine receptor: identification of ligand-specific and global activation mechanisms. J Biol Chem 285(25):19012–19021

    Article  PubMed  CAS  Google Scholar 

  • Ney P, Pandita RK, Newgreen DT, Breidenbach A, Stöhr T, Andersson K-E (2008) Pharmacological characterization of a novel investigational antimuscarinic drug, fesoterodine, in vitro and in vivo. Invest Urol 101:1036–1042

    CAS  Google Scholar 

  • Nirish SK, Cheng SK, Raufman J-P (2009) Muscarinic receptors and ligands in cancer. Am J Physiol Cell Physiol 296:C221–C232

    Google Scholar 

  • Nomura J, Hosoi T, Okuma Y, Nomura Y (2003) The presence and functions of muscarinic receptors in human T cells: the involvement in IL-2 and IL-2 receptor system. Life Sci 72:2121–2126

    Article  PubMed  CAS  Google Scholar 

  • Novi F, Marco S, Corsini GU, Maggio R (2004) Receptor oligomerization and homologous receptor down-regulation. J Biol Chem 279:7476–7486

    Article  PubMed  CAS  Google Scholar 

  • Park PS-H, Wells JW (2003) Monomers and oligomers of the M2 muscarinic cholinergic receptor purified from Sf9 cells. Biochemistry 42:12960–12971

    Article  PubMed  CAS  Google Scholar 

  • Pelman RS, Capo JP Jr, Forero-Schwanhaeuser S (2008) Solifenacin at 3 years: a review of efficacy and safety. Postgrad Med 120:85–91

    Article  PubMed  Google Scholar 

  • Peralta EG, Ashkenazi A, Winslow JW, Ramachandran J, Capon DJ (1988) Differential regulation of PI hydrolysis and adenylyl cyclase by muscarinic receptor subtypes. Nature 334:434–437

    Article  PubMed  CAS  Google Scholar 

  • Peretto I, Petrillo P, Imbimbo BP (2009) Medicinal chemistry and therapeutic potential of muscarinic M3 antagonists. Med Res Rev 29:867–902

    Article  PubMed  CAS  Google Scholar 

  • Ponicke K, Heinroth-Hoffmann I, Brodde O-E (2003) Demonstration of functional M3-muscarinic receptors in ventricular cardiomyocytes of adult rats. Br J Pharmacol 138:156–160

    Article  PubMed  CAS  Google Scholar 

  • Poulin B, Butcher A, McWilliams P, Bourgognon J-M, Pawlak R, Kong KC, Bottrill A, Mistry S, Wess J, Rosethorne EM, Charlton SJ, Tobin AB (2010) The M3-muscarinic receptor regulates learning and memory in a receptor phosphorylation/arrestin-dependent manner. Proc Natl Acad Sci USA 107:9440–9445

    Article  PubMed  CAS  Google Scholar 

  • Presland J (2005) Identifying novel modulators of G protein-coupled receptors via interaction at allosteric sites. Curr Opin Drug Discov Devel 8:567–576

    PubMed  CAS  Google Scholar 

  • Raes A, Hoebeke P, Segaert I, Van Laekck E, Dehoorne J, Vande WJ (2004) Retrospective analysis of efficacy and tolerability of tolterodine in children with overactive bladder. Eur Urol 45:240–244

    Article  PubMed  CAS  Google Scholar 

  • Rasmussen T, Fink-Jensen A, Sauerberg P, Swedberg MD, Thomsen C, Sheardown MJ, Jeppesen L, Calligaro DO, DeLapp NW, Whitesitt C, Ward JS, Shannon HE, Bymaster FP (2001) The muscarinic receptor agonist BuTAC, a novel potential antipsychotic, does not impair learning and memory in mouse passive avoidance. Schizophr Res 15:193–201

    Article  Google Scholar 

  • Ray NC, Alcaraz L (2009) Muscarinic antagonist-β-adrenergic agonist dual pharmacology molecules as bronchodilators: a patent review. Expert Opin Ther Pat 19:1–12

    Article  PubMed  CAS  Google Scholar 

  • Roszkowski AP (1961) An unusual type of sympathetic ganglionic stimulant. J Pharmacol Exp Ther 132:156–170

    PubMed  CAS  Google Scholar 

  • Salcedo C, Davalillo S, Cabellos J, Lagunas C, Balsa S, Pérez-del-Pulgar D, Ballarín M, Fernández AG (2009) In vivo and in vitro pharmacological characterization of SVT-40776, a novel M3 muscarinic receptor antagonist, for the treatment of overactive bladder. Br J Pharmacol 156:807–817

    Article  PubMed  CAS  Google Scholar 

  • Sarria B, Naline E, Zhang Y, Cortijo J, Molimard M, Moreau J, Therond P, Advenier C, Esteban J (2002) Muscarinic M2 receptors in acetylcholine-isoproterenol functional antagonism in human isolated bronchus. Am J Physiol 283:L1125–L1132

    CAS  Google Scholar 

  • Sastry BV, Sadavongvivad C (1978) Cholinergic systems in non-nervous tissues. Pharmacol Rev 30:65–132

    PubMed  CAS  Google Scholar 

  • Scarr E (2009) Muscarinic receptors in psychiatric disorders – can we mimic ‘health’? Neurosignals 17:298–310

    Article  PubMed  CAS  Google Scholar 

  • Schwarz RD, Davis RE, Jaen JC, Spencer CJ, Tecle H, Thomas AJ (1993) Characterization of muscarinic agonists in recombinant cell lines. Life Sci 52:465–472

    Article  PubMed  CAS  Google Scholar 

  • Servent D, Fruchart-Gaillard C (2009) Muscarinic toxins: tools for the study of the pharmacological and functional properties of muscarinic receptors. J Neurochem 109:51193–51202

    Article  CAS  Google Scholar 

  • Shah N, Khurana S, Cheng K, Raufman J-P (2009) Muscarinic receptors and ligands in cancer. Am J Physiol Cell Physiol 296:221–232

    Article  CAS  Google Scholar 

  • Sheardown MJ (2002) Muscarinic M1 receptor agonists and M2 receptor antagonists as therapeutic targets in Alzheimer’s disease. Expert Opin Ther Pat 12:863–870

    Article  CAS  Google Scholar 

  • Shekhar A, Potter WZ, Lightfoot J, Lienemann J, Dubé S, Mallinckrodt C, Bymaster FP, McKinzie DL, Felder CC (2008) Selective muscarinic receptor agonist xanomeline as a novel treatment approach for schizophrenia. Am J Psychiatry 165:1033–1039

    Article  PubMed  Google Scholar 

  • Shi Y, Oury F, Yadav VK, Wess J, Liu XS, Guo XE, Murshed M, Karsenty G (2010) Signaling through the M3 muscarinic receptor favors bone mass accrual by decreasing sympathetic activity. Cell Metab 11:231–238

    Article  PubMed  CAS  Google Scholar 

  • Shirey JK, Brady AE, Jones PJ, Davis AA, Bridges TM, Kennedy JP, Jadhav SB, Menon UN, Xiang Z, Watson ML, Christian EP, Doherty JJ, Quirk MC, Snyder DH, Lah JJ, Levey AI, Nicolle MM, Lindsley CW, Conn PJ (2009) A selective allosteric potentiator of the M1 muscarinic acetylcholine receptor increases activity of medial prefrontal cortical neurons and restores impairments in reversal learning. J Neurosci 229:14271–14286

    Article  CAS  Google Scholar 

  • Spalding TA, Burstein ES (2006) Constitutive activity of muscarinic acetylcholine receptors. J Recept Signal Transduct 26:61–85

    Article  CAS  Google Scholar 

  • Spalding TA, Trotter C, Skjaebaek N, Messier TL, Currier EA, Burstein EA, Burstein ES, Li D, Hacksell U, Brann MR (2002) Discovery of an ectopic activation site on the M1 muscarinic receptor. Mol Pharmacol 61:1297–1302

    Article  PubMed  CAS  Google Scholar 

  • Spalding TA, Ma JN, Ott TR, Friberg M, Bajpai A, Bradley SR, Davis RE, Brann MR, Burstein ES (2006) Structural requirements of transmembrane domain 3 for activation by the M1 muscarinic receptor agonists AC-42, AC-260584, clozapine, and N-desmethylclozapine: evidence for three distinct modes of receptor activation. Mol Pharmacol 70:1974–1983

    Article  PubMed  CAS  Google Scholar 

  • Stahl E, Ellis J (2010) Novel allosteric effects of amiodarone at the muscarinic M5 receptor. J Pharmacol Exp Ther 334(1):214–222

    Article  PubMed  CAS  Google Scholar 

  • Steidl S, Yeomans JS (2009) M5 muscarinic receptor knockout mice show reduced morphine-induced locomotion but increased locomotion after cholinergic antagonism in the ventral tegmental area. J Pharmacol Exp Ther 328:263–275

    Article  PubMed  CAS  Google Scholar 

  • Steinfeld T, Mammen M, Smith JAM, Wilson RD, Jasper JR (2007) A novel multivalent ligand that bridges the allosteric and orthosteric binding sites of the M2 muscarinic receptor. Mol Pharmacol 72:291–302

    Article  PubMed  CAS  Google Scholar 

  • Steinfeld T, Pulido-Rios MT, Chin K, King K, Huang JX, Lee TW, Jasper JR, Ji Y, Hegde S, Mammen M (2009) In vitro characterization of TD-4208, a lung-selective and long-acting muscarinic antagonist bronchodilator. Am J Respir Crit Care Med 179:A4553

    Google Scholar 

  • Stengel PW, Gomez J, Wess J, Cohen M (2000) M2 and M4 receptor knockout mice: muscarinic receptor function in cardiac and smooth muscle in vitro. J Pharmacol Exp Ther 292:877–885

    PubMed  CAS  Google Scholar 

  • Struchmann N, Wiegand S, Gschnell A, Masashisa K, Kummer W, Wess J, Haberberger RV (2003) Role of muscarinic receptor subtypes in the constriction of peripheral airways, studies on receptor deficient mice. Mol Pharmacol 64:1444–1451

    Article  Google Scholar 

  • Sur C, Mallorga PJ, Wittman M, Jacobson MA, Pascarella D, Williams JB, Brandish PE, Pettibone DJ, Scolnick EM, Conn JP (2003) N-desmethylclozapine, an allosteric agonist at muscarinic 1 receptor, potentiates N-methyl-d-aspartate receptor activity. Proc Natl Acad Sci USA 100:13674–13679

    Article  PubMed  CAS  Google Scholar 

  • Swedberg MD, Sheardown MJ, Sauerberg P, Olesen PH, Suzdak PD, Hansen KT, Bymaster FP, Ward JS, Mitch CH, Calligaro DO, DeLapp NW, Shannon HE (1997) Butylthio[2.2.2] (NNC11-1053/LY297802): an orally active muscarinic agonist analgesic. J Pharmacol Exp Ther 281:876–883

    PubMed  CAS  Google Scholar 

  • Tayebati SK, Di Tullio MA, Tomassoni D, Amenta F (2003) Localization of the m5 muscarinic cholinergic receptor in rat circle of Willis and pial arteries. Neuroscience 122:205–211

    Article  PubMed  CAS  Google Scholar 

  • Thomas EA, Baker SA, Ehlert FJ (1993) Functional role for the M2 muscarinic receptor in smooth muscle of guinea pig ileum. Mol Pharmacol 44:102–110

    PubMed  CAS  Google Scholar 

  • Thomas RL, Langmead CJ, Wood MD, Challiss RA (2009) Contrasting effects of allosteric and orthosteric agonists on m1 muscarinic acetylcholine receptor internalization and down-regulation. J Pharmacol Exp Ther 331:1086–1095

    Article  PubMed  CAS  Google Scholar 

  • Thomas DR, Dada A, Jones GA, Deisz RA, Gigout S, Langmead CJ, Werry TD, Hendry N, Hagan JJ, Davies CH, Watson JM (2010) N-desmethylclozapine (NDMC) is an antagonist at the human native muscarinic M(1) receptor. Neuropharmacology 58:1206–1214

    Article  PubMed  CAS  Google Scholar 

  • Tran JA, Chang A, Matsui M, Ehlert FJ (2009) Estimation of relative microscopic affinity constants of agonists for the active state of the receptor in functional studies on M2 and M3 muscarinic receptors. Mol Pharmacol 75:381–396

    Article  PubMed  CAS  Google Scholar 

  • Trendelenburg A-U, Gomeza J, Klebroff W, Zhou H, Wess J (2003) Heterogeneity of presynaptic muscarinic receptors mediating inhibition of sympathetic transmitter release: a study with M2- and M4-receptor-deficient mice. Br J Pharmacol 138:469–480

    Article  PubMed  CAS  Google Scholar 

  • Tzarvara ET, Bymaster FP, Felder CC, Wade M, Gomeza J, Wess J, McKinzie DL, Nomikos GG (2003) Dysregulated hippocampal acetylcholine neurotransmission and impaired cognition in M2, M4 and M2/M4 muscarinic receptor knockout mice. Mol Psychiatry 8:673–679

    Article  CAS  Google Scholar 

  • Unno T, Matsuyama H, Komori S (2003) Interaction between the M2- and M3-receptor subtypes in muscarinic electrical and mechanical responses of intestinal smooth muscles. Neurophysiology 35:262–273

    Article  CAS  Google Scholar 

  • van Richards MH, Giersbergen PL (1995) Human muscarinic receptors expressed in A9L and CHO cells: activation by full and partial agonists. Br J Pharmacol 114:1241–1249

    PubMed  CAS  Google Scholar 

  • Verhein KC, Fryer AD, Jacoby DB (2009) Neural control of airway inflammation. Curr Allergy Asthma Rep 9:1534–6315

    Article  Google Scholar 

  • Vilaro MT, Palacios JM, Mengod G (1990) Localization of m5 muscarinic receptor mRNA in rat brain examined by in situ hybridization histochemistry. Neurosci Lett 114:154–159

    Article  PubMed  CAS  Google Scholar 

  • Voigtlander U, Johren K, Mohr M, Raasch A, Trankle C, Buller S, Ellis J, Holtje HD, Mohr K (2003) Allosteric site on muscarinic acetylcholine receptors: identification of two amino acids in the muscarinic M2 receptor that account entirely for the M2/M5 subtype selectivities of some structurally diverse allosteric ligands in N-methylscopolamine-occupied receptors. Mol Pharmacol 64:21–31

    Article  PubMed  Google Scholar 

  • Volpicelli LA, Levey AI (2004) Muscarinic acetylcholine receptor subtypes in cerebral cortex and hippocampus. Prog Brain Res 145:59–66

    Article  PubMed  CAS  Google Scholar 

  • Wang SZ, el-Fakahany EE (1993) Application of transfected cell lines in studies of functional receptor subtype selectivity of muscarinic agonists. J Pharmacol Exp Ther 266:237–243

    PubMed  CAS  Google Scholar 

  • Wess J (1996) Molecular biology of muscarinic acetylcholine receptors. Crit Rev Neurobiol 10:69–99

    PubMed  CAS  Google Scholar 

  • Wess J (2004) Muscarinic acetylcholine receptor knockout mice: novel phenotypes and clinical implications. Annu Rev Pharmacol Toxicol 44:423–450

    Article  PubMed  CAS  Google Scholar 

  • Wess J (2005) Allosteric binding sites on muscarinic acetylcholine receptors. Mol Pharmacol 6:1506–1509

    Google Scholar 

  • Wess J, Duttarov A, Gomeza J, Zhang W, Yamada M, Felder CC, Bernardini N, Reeh PW (2003) Muscarinic receptor subtypes mediating central and peripheral antinociception studied with muscarinic receptor knockout mice: a review. Life Sci 72:18–19

    Article  CAS  Google Scholar 

  • Wess J, Eglen RM, Gautam D (2007) Muscarinic acetylcholine receptors: mutant mice provide new insights for drug development. Nat Rev Drug Discov 6:721–733

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ (2008) Acetylcholine beyond neurons: the non-neuronal cholinergic system in humans. Br J Pharmacol 154:1558–1571

    Article  PubMed  CAS  Google Scholar 

  • Wessler I, Kirkpatrick CJ, Racke K (1998) Non-neuronal acetylcholine, a locally acting molecule, widely distributed in biological systems: expression and function in humans. Pharmacol Ther 77:59–79

    Article  PubMed  CAS  Google Scholar 

  • Wood MD, Murkitt KL, Ho M, Watson JM, Brown F, Hunter AJ, Middlemiss DN (1999) Functional comparison of muscarinic partial agonists at muscarinic receptor subtypes hM1, hM2, hM3, hM4 and hM5 using microphysiometry. Br J Pharmacol 126:1620–1624

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Masunaga K, Satoji Y, Maeda Y, Nagata T, Inadome A (2008) Basic and clinical aspects of non-neuronal acetylcholine: expression of non-neuronal acetylcholine in urothelium and its clinical significance. J Pharmacol Sci 106:193–198

    Article  PubMed  CAS  Google Scholar 

  • Yoshida M, Masunaga K, Nagata T, Yono M, Homma Y (2010) The forefront for novel therapeutic agents based on the pathophysiology of lower urinary tract dysfunction: pathophysiology and pharmacotherapy of overactive bladder. J Pharmacol Sci 112:128–134

    Article  PubMed  CAS  Google Scholar 

  • Zholos AV, Tsvilovskyy VV, Bolton TB (2003) Muscarinic cholinergic excitation of smooth muscle: signal transduction and single cationic channel properties. Neurophysiology 35:283–301

    Article  CAS  Google Scholar 

  • Zholos AV, Tsystsyura YD, Gordienko DV, Tsvilovskyy VV, Bolton TB (2004) Phospholipase C, but not InsP3 or DAG, -dependent activation of the muscarinic receptor-operated cation current in guinea-pig ileal smooth muscle cells. Br J Pharmacol 141:23–36

    Article  PubMed  CAS  Google Scholar 

  • Zinner N (2007) Darifenacin: a muscarinic M3-selective receptor antagonist for the treatment of overactive bladder. Expert Opin Pharmacother 8:511–523

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard M. Eglen Ph.D. .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Eglen, R.M. (2012). Overview of Muscarinic Receptor Subtypes. In: Fryer, A., Christopoulos, A., Nathanson, N. (eds) Muscarinic Receptors. Handbook of Experimental Pharmacology, vol 208. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23274-9_1

Download citation

Publish with us

Policies and ethics