Skip to main content

Notes on Time’s Enigma

  • Chapter
  • First Online:
The Arrows of Time

Part of the book series: Fundamental Theories of Physics ((FTPH,volume 172))

Abstract

Scientists continue to wrestle with the enigma of time. Is time a dynamic or a fundamental property of spacetime? Why does it have an arrow pointing from past to future? Why are physical laws time-symmetric in a universe with broken time-reversal symmetry? These questions remain a mystery. The hope has been that an understanding of the selection of the initial state for our universe would solve such puzzles, especially that of times arrow. In this contribution, I discuss how the birth of the universe from the multiverse helps to unravel the nature of time and the reasons behind the time-reversal symmetry of our physical laws. I make the distinction between a local emerging arrow of time in the nucleating universe and the fundamental time with no arrow in the multiverse. The very event of nucleation of the universe from the multiverse breaks time-reversal symmetry, inducing a locally emergent arrow. But, the laws of physics imprinted on this bubble are not processed at birth. Time-reversal symmetry of laws in our universe is inherited from its birth in the multiverse, since these laws originate from the arrowless multiversal time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    It is interesting that our program for the birth of the universe from the multiverse [1, 6] has led to some intriguing observational consequences [6], with three of its predictions already succesfully tested so far, namely: the void [7], the dark flow [8], and σ8[4, 5].

  2. 2.

    An emerging time in the multiverse does not appear plausible since the emergence adds information on the multiverse that wasn’t there prior.

References

  1. R. Holman, L. Mersini-Houghton, Phys. Rev. D74, 123510 (2005) [e-Print: hep-th/0511102] and [e-Print: hep-th/0512070]; L. Mersini-Houghton, Class. Quant. Grav. 22, 3481–3490 (2005) [e-Print: hep-th/0504026]; A. Kobakhidze, L. Mersini-Houghton, Eur. Phys. J. C49, 869–873 (2004) [e-Print: hep-th/0410213]

    Google Scholar 

  2. L. Mersini-Houghton, Sep 2008 [e-Print: arXiv:0809.362]; L. Mersini-Houghton, AIP Conf. Proc. 878, 315–322, Madrid (2006), The dark side of the universe, 315–322, [e-Print: hep-ph/0609157]; L. Mersini-Houghton, AIP Conf. Proc. 861973–980, Paris (2005), Albert Einstein’s century, 973–980, [e-Print: hep-th/0512304]

    Google Scholar 

  3. L. Mersini-Houghton, Selection of Initial Conditions: The Origin of Our Universe from the Multiverse, in: R. Vaas (ed.): Beyond the Big Bang. Springer, Heidelberg 2012 [e-Print: arXiv:0804.4280]

    Google Scholar 

  4. E. Komatsu et al. “Five-years Wilkinson microwave anisotropy probe (WMAP) observations: Cosmological interpretation” Astrophys. J. Suppl. 180, 330 (2009) [astro-ph/0803.0547]

    Google Scholar 

  5. By SDSS Collaboration, J.K. Adelman-McCarthy et al., Astrophys. J. Suppl. 175, 297–313 (2008) [astro-ph/0707.3413]; M.E.C. Swanson, M. Tegmark, M. Blanton, I. Zehavi, Mon. Not. Roy. Astron. Soc. 385, 1635–1655 (2008) [astro-ph/0702584]; R.R. Gibson, W.N. Brandt, D.P. Schneider [astro-ph/0808.2603]

    Google Scholar 

  6. R. Holman, L. Mersini-Houghton, T. Takahashi, Phys. Rev. D77, 063510 (Nov 2006) [e-Print: hep-th/0611223]; R. Holman, L. Mersini-Houghton, T. Takahashi, Phys.Rev. D77, 063511, (Dec 2006) [e-Print: hep-th/0612142]; L. Mersini-Houghton, R. Holman, J. Cosmology Astropart. Phys. 0902006 (2008) [e-Print: arXiv:0810.5388]

    Google Scholar 

  7. L. Rudnick, S. Brown, L.R. Williams, Astrophys. J. 671, 40–44 (2007) [e-Print: arXiv:0704.0908]

    Google Scholar 

  8. A. Kashlinsky, F. Atrio-Barandela, D. Kocevski, H.  Ebeling, Astrophys. J. 691, 1479–1493 (Sep 2008) [e-Print: arXiv:0809.3733] and [e-Print: arXiv:0809.3734]; L. Mersini-Houghton,, R.  Holman, J. Cosmology Astropart. Phys. 0902, 006 (2008) [e-Print: arXiv:0810.5388]

    Google Scholar 

  9. C. Kiefer, Does time exist in quantum gravity? (2009) [e-Print: arXiv:0909.3767]

    Google Scholar 

  10. L. Mersini-Houghton (2006) [arXiv:gr-qc/0609006]

    Google Scholar 

  11. H. Price, Time’s Arrow and Archimedes’Point: A View from Nowhen(Oxford University Press, Oxford, 1996)

    Google Scholar 

  12. G.W. Gibbons, S.W. Hawking, Phys. Rev. D15, 2738 (1977)

    Google Scholar 

  13. A. Aguirre Eternal Inflation: Past and Future, in: R. Vaas (ed.): Beyond the Big Bang. Springer, Heidelberg 2012 [e-Print: arXiv:0712.0571] and references herein; S. Winitzki, Eternal inflation. World Scientific, Hackensack 2009

    Google Scholar 

  14. D. Simon, J. Adamek, A. Rakic, J.C. Niemeyer, JCAP 0911, 008 (2009) [e-Print: arXiv:0908.2757]

    Google Scholar 

  15. L. Smolin, Gen. Rel. Grav. 17, 5 (1985); R. Brandenberger, T. Prokopec, V. Mukhanov (1992) [e-print: gr-qc/9208009]

    Google Scholar 

  16. G.W. Gibbons, S.W. Hawking, Phys. Rev. D., 15, N.10:2752–2756; P.C.W. Davies, L.H. Ford, D.N. Page, Phys. Rev. D. 34, N.6:1700–1706

    Google Scholar 

Download references

Acknowledgements

L.M-H is grateful to DAMTP for their hospitality during the time this work was done. LM-H is supported in part by DOE grant DE-FG02-06ER1418, NSF grant PHY-0553312 and FQXI.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura Mersini-Houghton .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Mersini-Houghton, L. (2012). Notes on Time’s Enigma. In: Mersini-Houghton, L., Vaas, R. (eds) The Arrows of Time. Fundamental Theories of Physics, vol 172. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23259-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23259-6_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23258-9

  • Online ISBN: 978-3-642-23259-6

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics