Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 609 Accesses

Abstract

First-principles Hubbard U parameters for use in ab initio methods for strongly-correlated systems, such as DFT + U and DFT+DMFT, have posed a challenge to theoretical calculations for some considerable time.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. W.E. Pickett, S.C. Erwin, E.C. Ethridge, Reformulation of the LDA+U method for a local-orbital basis. Phys. Rev. B 58(3), 1201 (1998)

    Article  ADS  Google Scholar 

  2. M. Cococcioni, S. de Gironcoli, Linear response approach to the calculation of the effective interaction parameters in the LDA+U method. Phys. Rev. B 71(3), 035105 (2005)

    Article  ADS  Google Scholar 

  3. H.J. Kulik, M. Cococcioni, D.A. Scherlis, N. Marzari, Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys. Rev. Lett 97(10), 103001 (2006)

    Article  ADS  Google Scholar 

  4. F. Aryasetiawan, M. Imada, A. Georges, G. Kotliar, S. Biermann, A.I. Lichtenstein, Frequency-dependent local interactions and low-energy effective models from electronic structure calculations. Phys. Rev. B 70(19), 195104 (2004)

    Article  ADS  Google Scholar 

  5. K. Karlsson, F. Aryasetiawan, O. Jepsen, Method for calculating the electronic structure of correlated materials from a truly first-principles LDA+U scheme. Phys. Rev. B 81(24), 245113 (2010)

    Article  ADS  Google Scholar 

  6. O. Gunnarsson, O.K. Andersen, O. Jepsen, J. Zaanen, Density-functional calculation of the parameters in the Anderson model: application to Mn in CdTe. Phys. Rev. B 39(3), 1708 (1989)

    Article  ADS  Google Scholar 

  7. V.I. Anisimov, O. Gunnarsson, Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43(10), 7570 (1991)

    Article  ADS  Google Scholar 

  8. K. Nakamura, R. Arita, Y. Yoshimoto, S. Tsuneyuki, First-principles calculation of effective onsite Coulomb interactions of 3d transition metals: constrained local density functional approach with maximally localized Wannier functions. Phys. Rev. B 74(23), 235113 (2006)

    Article  ADS  Google Scholar 

  9. F. Aryasetiawan, K. Karlsson, O. Jepsen, U. Schönberger, Calculations of Hubbard U from first-principles. Phys. Rev. B 74(12), 125106 (2006)

    Article  ADS  Google Scholar 

  10. D.D. O’Regan, N.D.M. Hine, M.C. Payne, A.A. Mostofi, Projector self-consistent DFT+U using nonorthogonal generalized Wannier functions. Phys. Rev. B 82(8), 081102 (2010)

    Article  ADS  Google Scholar 

  11. J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz, Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett 49(23), 1691 (1982)

    Article  ADS  Google Scholar 

  12. A.J. Cohen, P. Mori-Sanchez, W. Yang, Insights into current limitations of density functional theory. Science 321(5890), 792 (2008)

    Article  ADS  Google Scholar 

  13. J.F. Janak, Proof that \({\frac{\partial{e}} {\partial{n}_{i} }}=\epsilon_{i}\) in density-functional theory. Phys. Rev. B 18(12), 7165 (1978)

    Google Scholar 

  14. E. Runge, E.K.U. Gross, Density-functional theory for time-dependent systems. Phys. Rev. Lett 52(12), 997 (1984)

    Article  ADS  Google Scholar 

  15. F. Sottile, Response functions of semiconductors and insulators: from the Bethe-Salpeter equation to time-dependent density functional theory. Ph.D. thesis, École Polytechnique, Palaiseau, France, 2003

    Google Scholar 

  16. M.M. Rieger, L. Steinbeck, I. White, H. Rojas, R. Godby, The GW space–time method for the self-energy of large systems. Comput. Phys. Commun. 117(3), 211 (1999)

    Article  ADS  MATH  Google Scholar 

  17. M. Springer, F. Aryasetiawan, Frequency-dependent screened interaction in Ni within the random-phase approximation. Phys. Rev. B 57(8), 4364 (1998)

    Article  ADS  Google Scholar 

  18. F. Aryasetiawan, J.M. Tomczak, T. Miyake, R. Sakuma, Downfolded self-energy of many-electron systems. Phys. Rev. Lett 102(17), 176402 (2009)

    Article  ADS  Google Scholar 

  19. R.W. Godby, P.G. González, Density Functional Theories and Self-Energy Approaches. In: C. Fiolhais, F. Nogueira, M.A.L. Marques (eds) A Primer in Density Functional Theory of Lecture Notes in Physics, vol. 620, (Springer, Heidelberg, 2003)

    Google Scholar 

  20. E.K.U. Gross, E. Runge, O. Heinonen, Many-Particle Theory. (Adam Hilger, Bristol, 1991)

    MATH  Google Scholar 

  21. L. Hedin, New method for calculating the one-particle Green’s function with application to the electron-gas problem. Phys. Rev 139, A796 (1965)

    Article  ADS  Google Scholar 

  22. F. Aryasetiawan, O. Gunnarsson, The GW method. Rep. Prog. Phys 61, 273 (1998)

    Article  Google Scholar 

  23. C. Friedrich, A. Schindlmayr, Many-Body Perturbation Theory: The GW Approximation. In: J. Grotendorst, S. Blügel, D. Marx (eds) Computational Nanoscience: Do It Yourself! vol of NIC Series., (John von Neumann Institute for Computing, Jülich, 2006)

    Google Scholar 

  24. T. Ozaki, Efficient recursion method for inverting an overlap matrix. Phys. Rev. B 64(19), 195110 (2001)

    Article  ADS  Google Scholar 

  25. M.P. Prange, J.J. Rehr, G. Rivas, J.J. Kas, J.W. Lawson, Real space calculation of optical constants from optical to x-ray frequencies. Phys. Rev. B 80(15), 155110 (2009)

    Article  ADS  Google Scholar 

  26. C.J. Pickard, F. Mauri, Nonlocal pseudopotentials and magnetic fields. Phys. Rev. Lett 91(19), 196401 (2003)

    Article  ADS  Google Scholar 

  27. D. Varsano, L.A. Espinosa-Leal, X. Andrade, M.A.L. Marques, R. di Felice, A. Rubio, Towards a gauge invariant method for molecular chiroptical properties in TDDFT. Phys. Chem. Chem. Phys 11, 4481 (2009)

    Article  Google Scholar 

  28. P. Elliott, F. Furche, K. Burke, Excited States From Time-Dependent Density Functional Theory Reviews in Computational Chemistry, (Wiley, NJ, 2009) pp. 91–165.

    Google Scholar 

  29. D.D. O’Regan, M.C. Payne, A.A. Mostofi, Subspace representations in ab initio methods for strongly correlated systems. Phys. Rev. B 83(24), 245124 (2011)

    Article  ADS  Google Scholar 

  30. T. Miyake, F. Aryasetiawan, Screened Coulomb interaction in the maximally localized Wannier basis. Phys. Rev. B 77(8), 085122 (2008)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Daniel O’Regan .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

O’Regan, D.D. (2012). Tensorial Aspects of Calculating Hubbard U Interaction Parameters. In: Optimised Projections for the Ab Initio Simulation of Large and Strongly Correlated Systems. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23238-1_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23238-1_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23237-4

  • Online ISBN: 978-3-642-23238-1

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics