Skip to main content

Locomotion Selection and Mechanical Design for a Mobile Intra-abdominal Adhesion-Reliant Robot for Minimally Invasive Surgery

  • Conference paper
Towards Autonomous Robotic Systems (TAROS 2011)

Abstract

Miniaturisation of surgical robots combined with bio-inspired adhesive material offer the possibility of a device able to move stably inside the body. In this paper a miniature adhesion-reliant robot is proposed as an alternative to current cumbersome, externally anchored surgical robots. An effective locomotion strategy is selected according to the specific working environment of this application. This environment is the ceiling of the insufflated human abdomen during laparoscopic surgery. Having chosen the most appropriate actuation technology in the market (piezo-electricity), the mechanical design to implement the former locomotion strategy is demonstrated.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Dasgupta, P.: Advanced laparoscopic surgery using tha da Vinci robotic system. In: Engineers, I.o.M. (ed.) Robotics in Surgery. State of the Art., London (2010)

    Google Scholar 

  2. Gilbert, J.: Robots in laparoscopic surgery. In: Engineers, I.o.M. (ed.) Robotics in Surgery. State of the Art., London (2010)

    Google Scholar 

  3. Autumn, K., Sitti, M., Liang, Y., Peattie, A., Hansen, W., Sponberg, S., Kenny, T., Fearing, R., Israelachvili, J.: Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences of the United States of America 99, 12252 (2002)

    Article  Google Scholar 

  4. Geim, A., Grigorieva, S., Novoselov, K., Zhukov, A., Shapoval, S.: Microfabricated adhesive mimicking gecko foot-hair. Nature Materials 2, 461–463 (2003)

    Article  Google Scholar 

  5. Murphy, M., Aksak, B., Sitti, M.: Gecko-inspired directional and controllable adhesion. Small 5, 170–175 (2009)

    Article  Google Scholar 

  6. Gorb, S., Sinha, M., Peressadko, A., Daltorio, K., Quinn, R.: Insects did it first: a micropatterned adhesive tape for robotic applications. Bioinspiration & Biomimetics 2, S17 (2007)

    Article  Google Scholar 

  7. Taylor, G., Neville, A., Jayne, D., Roshan, R., Liskiewicz, T., Morina, A., Gaskell, P.: Wet adhesion for a miniature mobile intra-abdominal device based on biomimetic principles. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 224, 1473–1485

    Google Scholar 

  8. Autumn, K.: Properties, principles, and parameters of the gecko adhesive system. Biological Adhesives, 225–256 (2006)

    Google Scholar 

  9. Patronik, N., Ota, T., Zenati, M., Riviere, C.: A miniature mobile robot for navigation and positioning on the beating heart. IEEE Transactions on Robotics 25, 1109–1124 (2009)

    Article  Google Scholar 

  10. Rentschler, M., Dumpert, J., Platt, S., Iagnemma, K., Oleynikov, D., Farritor, S.: An in vivo mobile robot for surgical vision and task assistance. Journal of Medical Devices 1, 23 (2007)

    Article  Google Scholar 

  11. http://www.araknes.org/home.html (accessed November 2010)

  12. www.theodora.com/anatomy (accessed November 2010)

  13. Dario, P., Valleggi, R., Carrozza, M., Montesi, M., Cocco, M.: Microactuators for microrobots: A critical survey. Journal of Micromechanics and Microengineering 2, 141 (1992)

    Article  Google Scholar 

  14. Pons, J.: Emerging actuator technologies: a micromechatronic approach. John Wiley & Sons Inc., Chichester (2005)

    Book  Google Scholar 

  15. Henderson, D.: Simple Ceramic Motor... Inspiring Smaller Products. In: ACTUATOR 2006, vol. 50, p. 10 (2006)

    Google Scholar 

  16. Design Note: Quick Tips for Integrating SQUIGGLE Motors. New Scale Technologies Inc., http://www.newscaletech.com/app_notes/DesignNote_QuickTips-for-Integrating-Squiggle-Motors.pdf (accessed November 2010)

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

López, A.M. et al. (2011). Locomotion Selection and Mechanical Design for a Mobile Intra-abdominal Adhesion-Reliant Robot for Minimally Invasive Surgery. In: Groß, R., Alboul, L., Melhuish, C., Witkowski, M., Prescott, T.J., Penders, J. (eds) Towards Autonomous Robotic Systems. TAROS 2011. Lecture Notes in Computer Science(), vol 6856. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23232-9_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23232-9_16

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23231-2

  • Online ISBN: 978-3-642-23232-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics