Differential Diagnosis of Dementia Using HUMANN-S Based Ensembles

  • Patricio García Báez
  • Carmen Paz Suárez Araujo
  • Carlos Fernández Viadero
  • Aleš Procházka
Part of the Studies in Computational Intelligence book series (SCI, volume 378)


Dementia is one of the most prevalent diseases associated to aging. The two most common variations of this disease are Alzheimer Dementia (AD) type and Vascular Dementia (VD) type, but there are other many forms (OTD): Lewi Body, Subcortical, Parkinson, Trauma, Infectious dementias, etc. All of these forms can be associated with different patterns of anatomical affectation, different risk factors, multiple diagnostic characteristics and multiple profiles of neuropsychological tests, making the Differential Diagnosis of Dementias (DDD) very complex. In this chapter we propose new automatic diagnostic tools based on a data fusion scheme and neural ensemble approach, concretely we have designed HUMANN-S ensemble systems with missing data processing capability. Their ability have been explored using a battery of cognitive and functional/instrumental scales for DDD, among AD, VD and OTD. We carried out a comparative study between theese methods and a clinical expert, reaching these systems a higher level of performance than the expert. Our proposal is an alternative and effective complementary method to assist the diagnosis of dementia both, in specialized care as well as in primary care centres.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bennett, D.: Alzheimer’s disease and other dementias. In: Weiner, W., Goetz, C. (eds.) Neurology for the Non-Neurologist, 4th edn., pp. 233–243. Lippincott, Williams and Wilkins, Philadelphia, PA (1999)Google Scholar
  2. 2.
    Boller, F., Duyckaerts, C.: Alzheimer’s disease: clinical and anatomic issues. In: Feinberg, T., Farah, M. (eds.) Behavioral Neurology and Neuropsychology, 2nd edn., pp. 515–544. McGraw-Hill, New York (2004)Google Scholar
  3. 3.
    Bowler, J., Hachinski, V.: Vascular dementia. In: Feinberg, T., Farah, M. (eds.) Behavioral Neurology and Neuropsychology, 2nd edn., pp. 589–603. McGraw-Hill, New York (2004)Google Scholar
  4. 4.
    Caselli, R., Boeve, B.: The degenerative dementias. In: Goetz, C. (ed.) Textbook of Clinical Neurology, 2nd edn., Saunders, Philadelphia, pp. 681–712 (2003)Google Scholar
  5. 5.
    Dam, H., Abbass, H., Lokan, C., Yao, X.: Neural-based learning classifier systems. IEEE Transactions on Knowledge and Data Engineering 20(1), 26–39 (2008)CrossRefGoogle Scholar
  6. 6.
    Drucker, H., Cortes, C., Jackel, L., LeCun, Y., Vapnik, V.: Boosting and other ensemble methods. Neural Computation 6(6), 1289–1301 (1994)zbMATHCrossRefGoogle Scholar
  7. 7.
    Drucker, H., Schapire, R., Simard, P.: Boosting performance in neural networks. Int. J. Pattern Recognition Artif. Intelligence 7(4), 704–709 (1993)Google Scholar
  8. 8.
    Dubois, B., Feldman, H., Jacova, C., Cummings, J., Dekosky, S., Barberger -Gateau, P.: Revising the definition of alzheimer’s disease: a new lexicon. Lancet Neurology 9(11), 1118–1127 (2010)CrossRefGoogle Scholar
  9. 9.
    Fernandez -Viadero, C., Verduga, R., Crespo, D.: Biomarcadores del envejecimiento. In: Biogerontología, pp. 233–262. Universidad de Cantabria, Santander (2006)Google Scholar
  10. 10.
    Folstein, M., Folstein, S., McHugh, P.: Mini-mental state. a practical method for grading the cognitive state of patients for the clinician. Journal of Psychiatric Research 12(3), 189–198 (1975)CrossRefGoogle Scholar
  11. 11.
    García Báez, P., Fernández López, P., Suárez Araujo, C.P.: A parametric study of humann in relation to the noise. application to the identification of compounds of environmental interest. Systems Analysis Modelling and Simulation 43(9), 1213–1228 (2003)CrossRefGoogle Scholar
  12. 12.
    García Báez, P., Fernández Viadero, C., Pérez del Pino, M., Prochazka, A., Suárez Araujo, C.: Humann-based systems for differential diagnosis of dementia using neuropsychological tests. In: 14th International Conference on Intelligent Engineering Systems (INES), pp. 67–72. IEEE Xpress, Las Palmas de GC (2010)CrossRefGoogle Scholar
  13. 13.
    García Báez P., Pérez del Pino, M., Fernández Viadero, C., Regidor García, J.: Artificial intelligent systems based on supervised HUMANN for differential diagnosis of cognitive impairment: Towards a 4P-HCDS. In: Cabestany, J., Sandoval, F., Prieto, A., Corchado, J.M. (eds.) IWANN 2009. LNCS, vol. 5517, pp. 981–988. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  14. 14.
    García Báez, P., Suárez Araujo, C.P., Fernández Viadero, C., Regidor García, J.: Automatic prognostic determination and evolution of cognitive decline using artificial neural networks. In: Yin, H., Tino, P., Corchado, E., Byrne, W., Yao, X. (eds.) IDEAL 2007. LNCS, vol. 4881, pp. 898–907. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  15. 15.
    Hansen, L., Salamon, P.: Neural network ensembles. IEEE Transactions on Pattern Analysis and Machine Intelligence 12(10), 993–1001 (1990)CrossRefGoogle Scholar
  16. 16.
    Hjorth, J.: Computer Intensive Statistical Methods Validation, Mod. Sel., and Bootstap. Chapman and Hall, Boca Raton (1994)Google Scholar
  17. 17.
    Hrycej, T.: Modular Learning in Neural Networks. John Wiley and Sons, New York (1992)zbMATHGoogle Scholar
  18. 18.
    Jacobs, R., Jordan, M., Nowlan, S., Hinton, G.: Adaptive mixtures of local experts. Neural Computation 3(1), 79–87 (1991)CrossRefGoogle Scholar
  19. 19.
    Jordan, M., Jacobs, R.: Hierarchical mixtures of experts and the em algorithm. Neural Computation 6(2), 181–214 (1994)CrossRefGoogle Scholar
  20. 20.
    Jorm, A., Korten, A., Henderson, A.: The prevalence of dementia: a quantitativeintegration of the literature. Acta Psychiatrica Scandinavica 76(5), 465–479 (1987)CrossRefGoogle Scholar
  21. 21.
    Katz, S., Ford, A., Moskowitz, R.: Studies of illness in the aged. the index of adl: a standardized measure of biological and psychosocial function. JAMA 185, 914–919 (1963)Google Scholar
  22. 22.
    Kohonen, T.: Self-Organization and Associative Memory, 3rd edn. Springer Series in Information Sciences, Berlin, GE (1989)Google Scholar
  23. 23.
    Kuncheva, L., Bezdek, J., Duin, R.: Decision templates for multiple classifier fusion: An experimental comparison. Pattern Recognition 34(2), 299–314 (2001)zbMATHCrossRefGoogle Scholar
  24. 24.
    Lawton, M., Brody, E.: Assessment of older people: self-mantaining and instrumental activities of daily living. Gerontologist 9, 179–186 (1969)CrossRefGoogle Scholar
  25. 25.
    de Leon, M., Klunk, W.: Biomarkers for the early diagnosis of alzheimer’s disease. The Lancet Neurology 5(3), 198–199 (2006)CrossRefGoogle Scholar
  26. 26.
    Lim, A., Kukull, W., Nochlin, D., Leverenz, J., McCormick, W.: Clinico-neuropathological correlation of alzheimer’s disease in a community-based case series. Journal of the American Geriatrics Society 47(5), 564–569 (1999)Google Scholar
  27. 27.
    Liu, Y., Yao, X.: Simultaneous training of negatively correlated neural networks in an ensemble. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics 29(6), 716–725 (1999)CrossRefGoogle Scholar
  28. 28.
    Liu, Y., Yao, X., Higuchi, T.: Designing neural network ensembles by minimising mutual information. In: Mohammadian, M., Sarker, R., Yao, X. (eds.) Computational Intelligence in Control. Idea Group Inc., USA (2003)Google Scholar
  29. 29.
    Mahoney, F., Barthel, D.: Functional evaluation: The barthel index. Maryland State Medical Journal 14, 61–65 (1965)Google Scholar
  30. 30.
    Opitz, D., Shavlik, J.: Actively searching for an effective neural-network ensemble. Connection Science 8(3), 337–353 (1996)CrossRefGoogle Scholar
  31. 31.
    Polikar, R.: Ensemble based systems in decision making. IEEE Circuits and Systems Magazine 6(3), 21–45 (2006)CrossRefGoogle Scholar
  32. 32.
    Polikar, R., Topalis, A., Green, D., Kounios, J., Clark, C.: Comparative multiresolution wavelet analysis of erp spectral bands using an ensemble of classifiers app. for early diagnosis of alzheimer’s disease. Computers in Biology and Medicine 37(4), 542–558 (2007)CrossRefGoogle Scholar
  33. 33.
    Polikar, R., Topalis, A., Green, D., Kounios, J., Clark, C.: Ensemble based data fusion for early diagnosis of alzheimer’s disease. Information Fusion 9(1), 83–95 (2008)CrossRefGoogle Scholar
  34. 34.
    Reisberg, B.: Functional assessment staging (fast). Psychopharmacology Bulletin 24(4), 653–659 (1988)Google Scholar
  35. 35.
    Rosenblatt, F.: Principles of Neurodynamics. Spartan Books, Washington (1961)Google Scholar
  36. 36.
    Ruta, D., Gabrys, D.: Classifier selection for majority voting. Information Fusion 6(1), 63–81 (2005)CrossRefGoogle Scholar
  37. 37.
    Samad, T., Harp, S.: Self-organization with partial data. Network 3(2), 205–212 (1992)CrossRefGoogle Scholar
  38. 38.
    Schapire, R.: The strength of weak learnability. Machine Learning 5(2), 197–227 (1990)Google Scholar
  39. 39.
    Schoenberg, B., Anderson, D., Haerer, A.: Severe dementia - prevalence andclinical features in biracial us population. Archives of Neurology 42(8), 740–743 (1985)Google Scholar
  40. 40.
    Suárez Araujo, C., García Báez, P., Fernández Viadero, C.: Ganen: a new gating neural ensemble for automatic assessment of the severity level of dementia using neuropsychological tests. In: International Conference on Broadband and Biomedical Communications (IB2COM). IEEE Xplore, Málaga (2010)Google Scholar
  41. 41.
    Sunderland, T., Gur, R., Arnold, S.: The use of biomarkers in the elderly: current and future challenges. Biological Psychiatry 58(4), 272–276 (2005)CrossRefGoogle Scholar
  42. 42.
    Zaffalon, M., Wesnes, K., Petrini, O.: eliable diagnoses of dementia by the naive credal classifier inferred from incomplete cognitive data. Artificial Intelligence in Medicine 29(1-2), 61–79 (2003)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Patricio García Báez
    • 1
  • Carmen Paz Suárez Araujo
    • 2
  • Carlos Fernández Viadero
    • 3
  • Aleš Procházka
    • 4
  1. 1.Departamento de Estadística, Investigación Operativa y ComputaciónUniversidad de La LagunaLa LagunaSpain
  2. 2.Instituto Universitario de Ciencias y Tecnologías CibernéticasUniversidad de Las Palmas de Gran CanariaLas Palmas de Gran CanariaSpain
  3. 3.Hospital Psiquiátrico ParayasSantanderSpain
  4. 4.Department of Computing and Control EngineeringInstitute of Chemical Technology in PraguePragueCzech Republic

Personalised recommendations