Skip to main content

Detection of Communities and Bridges in Weighted Networks

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6871))

Abstract

Traditional graph-based clustering methods group vertices into non-intersecting clusters under the assumption that each vertex can belong to only a single cluster. On the other hand, recent research on graph-based clustering methods, applied to real world networks (e.g., protein-protein interaction networks and social networks), shows overlapping patterns among the underlying clusters. For example, in social networks, an individual is expected to belong to multiple clusters (or communities), rather than strictly confining himself/herself to just one. As such, overlapping clusters enable better models of real-life phenomena. Soft clustering (e.g., fuzzy c-means) has been used with success for network data as well as non-graph data, when the objects are allowed to belong to multiple clusters with a certain degree of membership. In this paper, we propose a fuzzy clustering based approach for community detection in a weighted graphical representation of social and biological networks, for which the ground truth associated to the nodes is available. We compare our results with a baseline method for both multi-labeled and single-labeled datasets.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering protein–protein interaction networks. Bioinformatics 23(13), i29 (2007)

    Article  Google Scholar 

  2. Bezdek, J.: Fuzzy mathematics in pattern classification. Unpublished Ph. D. dissertation, Cornell University, Ithaca, NY (1973)

    Google Scholar 

  3. Chen, J., Zaiane, O., Goebel, R.: Detecting communities in social networks using max-min modularity. In: SDM 2009, pp. 978–989 (2009)

    Google Scholar 

  4. Clauset, A., Newman, M., Moore, C.: Finding community structure in very large networks. Physical Review E 70(6), 66111 (2004)

    Article  Google Scholar 

  5. Dhillon, I., Guan, Y., Kulis, B.: Weighted graph cuts without eigenvectors a multilevel approach. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1944–1957 (2007)

    Google Scholar 

  6. Duggal, G., Navlakha, S., Girvan, M., Kingsford, C.: Uncovering Many Views of Biological Networks Using Ensembles of Near-Optimal Partitions. In: Proceedings of MultiClust: 1st International Workshop on Discovering, Summarizing and Using Multiple Clusterings, KDD (2010)

    Google Scholar 

  7. Girvan, M., Newman, M.: Community structure in social and biological networks. Proceedings of the National Academy of Sciences of the United States of America 99(12), 7821 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Gregory, S.: An algorithm to find overlapping community structure in networks. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS (LNAI), vol. 4702, pp. 91–102. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  9. Gunnemann, S., Seidl, T.: Subgraph Mining on Directed and Weighted Graphs. In: Advances in Knowledge Discovery and Data Mining, pp. 133–146 (2010)

    Google Scholar 

  10. Heller, K., Williamson, S., Ghahramani, Z.: Statistical models for partial membership. In: Proceedings of the 25th International Conference on Machine learning, pp. 392–399. ACM, New York (2008)

    Google Scholar 

  11. Henderson, K., Eliassi-Rad, T., Papdimitriou, S., Faloutsos, C.: HCDF: A hybrid community discovery framework. In: Proceedings of the 2010 SIAM Conference on Data Mining (SDM 2010), Columbus, OH (2010)

    Google Scholar 

  12. Hoeppner, F.: Fuzzy cluster analysis: methods for classification, data analysis, and image recognition. Wiley, Chichester (1999)

    Google Scholar 

  13. Hoff, P.: Random effects models for network data. In: Dynamic social network modeling and analysis: Workshop summary and papers, pp. 303–312 (2003)

    Google Scholar 

  14. Hong, T., Lin, K., Wang, S.: Fuzzy data mining for interesting generalized association rules* 1. Fuzzy sets and systems 138(2), 255–269 (2003)

    Article  MathSciNet  Google Scholar 

  15. Karypis, G., Kumar, V.: Parallel multilevel k-way partitioning scheme for irregular graphs. Proceedings of the 1996 ACM/IEEE Conference on Supercomputing, 35–35 (1996)

    Google Scholar 

  16. Long, B., Wu, X., Zhang, Z., Yu, P.: Unsupervised learning on k-partite graphs. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 317–326. ACM, New York (2006)

    Chapter  Google Scholar 

  17. Ma, X., Gao, L., Yong, X., Fu, L.: Semi-supervised clustering algorithm for community structure detection in complex networks. Physica A: Statistical Mechanics and its Applications 389(1), 187–197 (2010)

    Article  Google Scholar 

  18. Nepusz, T., Petróczi, A., Bazsó, F.: Fuzzy Clustering and the Concept of Bridgedness in Social Networks. In: Proceedings of the International Workshop and Conference on Network Science, NetSci (2007)

    Google Scholar 

  19. Nepusz, T., Petróczi, A., Négyessy, L., Bazsó, F.: Fuzzy communities and the concept of bridgeness in complex networks. Physical Review E 77(1), 16107 (2008)

    Article  MathSciNet  Google Scholar 

  20. Newman, M.: Scientific collaboration networks. I. Network construction and fundamental results. Physical Review E 64(1), 16131 (2001)

    Article  Google Scholar 

  21. Newman, M.: Analysis of weighted networks. Physical Review E 70(5), 56131 (2004)

    Article  Google Scholar 

  22. Newman, M., Girvan, M.: Finding and evaluating community structure in networks. Physical review E 69(2), 26113 (2004)

    Article  Google Scholar 

  23. Palla, G., Derényi, I., Farkas, I., Vicsek, T.: Uncovering the overlapping community structure of complex networks in nature and society. Nature 435(7043), 814–818 (2005)

    Article  Google Scholar 

  24. Ravasz, E., Somera, A., Mongru, D., Oltvai, Z., Barabási, A.: Hierarchical organization of modularity in metabolic networks. Science 297(5586), 1551 (2002)

    Article  Google Scholar 

  25. Reichardt, J., Bornholdt, S.: Detecting fuzzy community structures in complex networks with a Potts model. Physical Review Letters 93(21), 218701 (2004)

    Article  Google Scholar 

  26. Ruan, J., Zhang, W.: An efficient spectral algorithm for network community discovery and its applications to biological and social networks. In: Seventh IEEE International Conference on Data Mining, ICDM 2007. pp. 643–648. IEEE, Los Alamitos (2008)

    Google Scholar 

  27. Sawardecker, E., Sales-Pardo, M., Amaral, L.: Detection of node group membership in networks with group overlap. The European Physical Journal B 67(3), 277–284 (2008)

    Article  MATH  Google Scholar 

  28. Stark, C., Breitkreutz, B., Reguly, T., Boucher, L., Breitkreutz, A., Tyers, M.: BioGRID: a general repository for interaction datasets. Nucleic acids research 34(suppl 1), D535 (2006)

    Article  Google Scholar 

  29. Thurman, B.: In the office: Networks and coalitions* 1. Social Networks 2(1), 47–63 (1980)

    Article  Google Scholar 

  30. Ucar, D., Asur, S., Catalyurek, U., Parthasarathy, S.: Improving functional modularity in protein-protein interactions graphs using hub-induced subgraphs. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 371–382. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  31. White, S., Smyth, P.: A spectral clustering approach to finding communities in graphs. In: Proceedings of the Fifth SIAM International Conference on Data Mining. p. 274. Society for Industrial Mathematics (2005)

    Google Scholar 

  32. Zachary, W.: An information flow model for conflict and fission in small groups. Journal of Anthropological Research 33(4), 452–473 (1977)

    Article  Google Scholar 

  33. Zadeh, L.: Fuzzy sets*. Information and control 8(3), 338–353 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, S., Wang, R., Zhang, X.: Identification of overlapping community structure in complex networks using fuzzy c-means clustering. Physica A: Statistical Mechanics and its Applications 374(1), 483–490 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Saha, T., Domeniconi, C., Rangwala, H. (2011). Detection of Communities and Bridges in Weighted Networks. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2011. Lecture Notes in Computer Science(), vol 6871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23199-5_43

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23199-5_43

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23198-8

  • Online ISBN: 978-3-642-23199-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics