Skip to main content

Decisions: Algebra and Implementation

  • Conference paper
Machine Learning and Data Mining in Pattern Recognition (MLDM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 6871))

  • 2012 Accesses

Abstract

This paper presents a generalized theory for capturing and manipulating classification information. We define decision algebra which models decision-based classifiers as higher order decision functions abstracting from implementations using decision trees (or similar), decision rules, and decision tables. As a proof of the decision algebra concept we compare decision trees with decision graphs, yet another instantiation of the proposed theoretical framework, which implement the decision algebra operations efficiently and capture classification information in a non-redundant way. Compared to classical decision tree implementations, decision graphs gain learning and classification speed up to 20% without accuracy loss and reduce memory consumption by 44%. This is confirmed by experiments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. King, P.: Decision tables. The Computer Journal 10(2), 135–142 (1967)

    Article  MATH  Google Scholar 

  2. Tan, M.S.P.-N., Kumar, V.: Introduction to Data Mining. Addison-Wesley, Reading (2005)

    Google Scholar 

  3. Rokach, L., Maimon, O.: Data Mining with Decision Trees: Theory and Applications. World Scientific, Singapore (2008)

    MATH  Google Scholar 

  4. Bryant, R.E.: Graph-based algorithms for boolean function manipulation. IEEE Transactions on Computers 35, 677–691 (1986)

    Article  MATH  Google Scholar 

  5. Frank, A., Asuncion, A.: UCI machine learning repository. University of California, Irvine, School of Information and Computer Sciences (2010), http://archive.ics.uci.edu/ml

  6. Bryant, R.E.: Symbolic boolean manipulation with ordered binary-decision diagrams. ACM Computing Surveys 24, 293–318 (1992)

    Article  Google Scholar 

  7. Trapp, M.: Optimierung objektorientierter programme. Ph.D. dissertation. Universität Karlsruhe, Karlsruhe (December 1999)

    Google Scholar 

  8. Ping He, L.C., Xu, X.-H.: Fast C4.5. In: Proc. Int. Conf. Machine Learning Cybernetics, ICMLC 2007, Hong Kong, China, vol. 5, pp. 2841–2846 (August 2007)

    Google Scholar 

  9. Ruggieri, S.: Efficient c4.5. IEEE Transactions on Knowledge and Data Engineering 14, 438–444 (2002)

    Article  Google Scholar 

  10. Quinlan, J.R.: Simplifying decision trees. Int. J. Man-Mach. Stud. 27(3), 221–234 (1987)

    Article  Google Scholar 

  11. Nilsson, N.J.: Introduction to machine learning: An early draft of proposed text book. Stanford University, Stanford (1996), http://ai.stanford.edu/~nilsson/mlbook.html

    Google Scholar 

  12. Lam, K.-W., Lee, V.C.S.: Building decision trees using functional dependencies. In: ITCC 2004: Proc. of the Int. Conf. on Inf. Technology: Coding and Computing (ITCC 2004), vol. 2, p. 470. IEEE Computer Society, Washington, DC, USA (2004)

    Chapter  Google Scholar 

  13. Pagallo, G., Haussler, D.: Boolean feature discovery in empirical learning. Mach. Learn. 5(1), 71–99 (1990)

    Article  Google Scholar 

  14. John, G.H.: Robust linear discriminant trees. In: AI & Statistics 1995, pp. 285–291. Springer, Heidelberg (1994)

    Google Scholar 

  15. Vilalta, R., Blix, G., Rendell, L.: Global data analysis and the fragmentation problem in decision tree induction. In: van Someren, M., Widmer, G. (eds.) ECML 1997. LNCS, vol. 1224, pp. 312–326. Springer, Heidelberg (1997)

    Google Scholar 

  16. Friedman, J.H., Kohavi, R., Yun, Y.: Lazy decision trees (1996)

    Google Scholar 

  17. Oliver, J.J.: Decision graphs - an extension of decision trees (1993)

    Google Scholar 

  18. Quinlan, J.R.: Generating production rules from decision trees. In: IJCAI 1987: Proceedings of the 10th International Joint Conference on Artificial Intelligence, pp. 304–307. Morgan Kaufmann Publishers Inc., San Francisco (1987)

    Google Scholar 

  19. Kargupta, H., Dutta, H.: Orthogonal decision trees. In: Proceedings of The Fourth IEEE International Conference on Data Mining (ICDM 2004), pp. 1028–1042 (2004)

    Google Scholar 

  20. Hafez, A., Deogun, J., Raghavan, V.V.: The item-set tree: A data structure for data mining. In: Mohania, M., Tjoa, A.M. (eds.) DaWaK 1999. LNCS, vol. 1676, pp. 183–192. Springer, Heidelberg (1999)

    Google Scholar 

  21. Tang, Y., Meersman, R.: On Constructing Semantic Decision Tables. In: Wagner, R., Revell, N., Pernul, G. (eds.) DEXA 2007. LNCS, vol. 4653, pp. 34–44. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  22. Fernandez del Pozo, C.B.J.A., Gomez, M.: A list-based compact representation for large decision tables management. European Journal of Operational Research 160(3), 638–662 (2005)

    Article  MATH  Google Scholar 

  23. Murphy, O.J., McCraw, R.L.: Designing storage efficient decision trees. IEEE Trans. Comput. 40(3), 315–320 (1991)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Danylenko, A., Lundberg, J., Löwe, W. (2011). Decisions: Algebra and Implementation. In: Perner, P. (eds) Machine Learning and Data Mining in Pattern Recognition. MLDM 2011. Lecture Notes in Computer Science(), vol 6871. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23199-5_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23199-5_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23198-8

  • Online ISBN: 978-3-642-23199-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics