Skip to main content

Decentralized Reasoning about Gradual Changes of Topological Relationships between Continuously Evolving Regions

  • Conference paper
Spatial Information Theory (COSIT 2011)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 6899))

Included in the following conference series:

Abstract

A key challenge facing many applications of new geosensor networks technology is to derive meaningful spatial knowledge from low-level sensed data. This paper presents a formal model for representing and computing topological relationship changes between continuously evolving regions monitored by a geosensor network. The definition of “continuity” is used to constrain region evolution and enables the local detection of node state transitions in the network. The model provides a computational framework for the detection of global high-level qualitative relationship changes from local low-level quantitative sensor measurements. In this paper, an efficient decentralized algorithm is also designed and implemented to detect relationship changes and its computational efficiency is evaluated experimentally using simulation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Stefanidis, A., Nittel, S.: GeoSensor Networks. CRC Press, Boca Raton (2005)

    Google Scholar 

  2. Egenhofer, M., Franzosa, R.: Point-set topological spatial relations. International Journal of Geographical Information Systems 5, 161–174 (1991)

    Article  Google Scholar 

  3. Randell, D.A., Cui, Z., Cohn, A.G.: A spatial logic based on regions and connection. In: 3rd International Conference on Knowledge Representation and Reasoning, pp. 165–176. Morgan Kaufmann, San Francisco (1992)

    Google Scholar 

  4. Clementini, E., Felice, P.D., van Oosterom, P.: A small set of formal topological relationships suitable for end-user interaction. In: Proceedings of the Third International Sym. on Advances in Spatial Databases, pp. 277–295 (1993)

    Google Scholar 

  5. Zhao, F., Guibas, L.J.: Wireless Sensor Networks: An Information Processing Approach. Elsevier, Amsterdam (2004)

    Google Scholar 

  6. Estrin, D., Govindan, R., Heidemann, J., Kumar, S.: Next century challenges: scalable coordination in sensor networks. In: Proceedings of the 5th International Conference on Mobile Computing and Networking, pp. 263–270. ACM, New York (1999)

    Google Scholar 

  7. Madden, S., Franklin, M., Hellerstein, J., Hong, W.: TAG: a tiny aggregation service for ad-hoc sensor networks. In: 5th Annual Symposium on Operating Systems Design and Implementation (OSDI), pp. 1–16 (2002)

    Google Scholar 

  8. Hellerstein, J.M., Hong, C.-M., Madden, S., Stanek, K.: Beyond average: Toward sophisticated sensing with queries. In: Zhao, F., Guibas, L.J. (eds.) IPSN 2003. LNCS, vol. 2634, pp. 63–79. Springer, Heidelberg (2003)

    Chapter  Google Scholar 

  9. Klippel, A., Li, R.: The endpoint hypothesis: A topological-cognitive assessment of geographic scale movement patterns. In: Hornsby, K.S., Claramunt, C., Denis, M., Ligozat, G. (eds.) COSIT 2009. LNCS, vol. 5756, pp. 177–194. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  10. Guibas, L.J.: Sensing, tracking and reasoning with relations. IEEE Signal Processing Magazine 19(2), 73–85 (2002)

    Article  Google Scholar 

  11. Worboys, M.F., Duckham, M.: Monitoring qualitative spatiotemporal change for geosensor networks. International Journal of Geographic Information Science 20(10), 1087–1108 (2006)

    Article  Google Scholar 

  12. Farah, C., Zhong, C., Worboys, M., Nittel, S.: Detecting topological change using a wireless sensor network. In: Cova, T.J., Miller, H.J., Beard, K., Frank, A.U., Goodchild, M.F. (eds.) GIScience 2008. LNCS, vol. 5266, pp. 55–69. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Jiang, J., Worboys, M.: Event-based topology for dynamic planar areal objects. International Journal of Geographical Information Science 23(1), 33–60 (2009)

    Article  Google Scholar 

  14. Sadeq, M.J.: In network detection of topological change of region with a wireless sensor network. PhD thesis, The University of Melbourne (2009)

    Google Scholar 

  15. Jiang, J., Worboys, M., Nittel, S.: Qualitative change detection using sensor networks based on connectivity information. GeoInformatica, 1–24 (2009) (accepted)

    Google Scholar 

  16. Shi, M., Winter, S.: Detecting change in snapshot sequences. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 219–233. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  17. Liu, H., Schneider, M.: Tracking continuous topology changes of complex moving regions. In: 26th Annual ACM Symp. on Applied Computing, ACM SAC (2011)

    Google Scholar 

  18. Jin, G., Nittel, S.: Efficient tracking of 2D objects with spatiotemporal properties in wireless sensor networks. Distributed and Parallel Databases 29(1), 3–30 (2011)

    Article  Google Scholar 

  19. Duckham, M., Nussbaum, D., Sack, J.R., Santoro, N.: Efficient, decentralized computation of the topology of spatial regions. IEEE Transactions on Computers 60 (2011), doi:10.1109/TC.2010.177 (in press)

    Google Scholar 

  20. Guan, L.J., Duckham, M.: Decentralized computing of topological relationships between heterogeneous regions. In: Lees, B., Laffan, S. (eds.) Proc. 10th International Conference on GeoComputation, Sydney, Australia (2009)

    Google Scholar 

  21. Duckham, M., Jeong, M.H., Li, S., Renz, J.: Decentralized querying of topological relations between regions without using localization. In: Agrawal, A.A.D., Mokbel, M., Zhang, P. (eds.) Proc. 18th ACM SIGSPATIAL GIS, pp. 414–417. ACM, New York (2010)

    Chapter  Google Scholar 

  22. Duckham, M., Stell, J., Vasardani, M., Worboys, M.: Qualitative change to 3-valued regions. In: Fabrikant, S.I., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 249–263. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  23. Egenhofer, M., Sharma, g., Mark, D.: A critical comparison of the 4-intersection and 9-intersection models for spatial relations: Formal analysis. In: McMaster, R., Armstrong, M. (eds.) Autocarto 11, pp. 1–11 (1993)

    Google Scholar 

  24. Egenhofer, M.J., Franzosa, R.D.: On the equivalence of topological relations. International Journal of Geographical Information Systems 9(2), 133–152 (1995)

    Article  Google Scholar 

  25. Rosenfeld, A.: Digital topology. The American Mathematical Monthly 86(8), 621–630 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kong, T.Y., Rosenfeld, A.: Digital topology: introduction and survey. Comput. Vision Graph. Image Process. 48(3), 357–393 71400 (1989)

    Google Scholar 

  27. Egenhofer, M.J., Sharma, J.: Topological relations between regions in R 2 and Z 2. In: Abel, D., Ooi, B.C. (eds.) SSD 1993. LNCS, vol. 692, pp. 316–336. Springer, Heidelberg (1993)

    Google Scholar 

  28. Winter, S.: Topological relations between discrete regions. In: Egenhofer, M., Herring, J. (eds.) SSD 1995. LNCS, vol. 951, pp. 310–327. Springer, Heidelberg (1995)

    Google Scholar 

  29. Galton, A.: Continuous change in spatial regions. In: Spatial Information Theory A Theoretical Basis for GIS, pp. 1–13. Springer, Berlin (1997)

    Chapter  Google Scholar 

  30. Galton, A.: Continuous motion in discrete space. In: Principles of Knowledge Representation and Reasoning: Proceedings of the Seventh International Conference, pp. 26–37. Morgan Kaufmann Publishers, San Francisco (2000)

    Google Scholar 

  31. Egenhofer, M.: The family of conceptual neighborhood graphs for region-region relations. In: Fabrikant, S., Reichenbacher, T., van Kreveld, M., Schlieder, C. (eds.) GIScience 2010. LNCS, vol. 6292, pp. 42–55. Springer, Heidelberg (2010)

    Google Scholar 

  32. Egenhofer, M., Al-Taha, K.: Reasoning about gradual changes of topological relationships. In: Frank, A., Campari, I., Formentini, U. (eds.) GIS 1992. LNCS, vol. 639, pp. 196–219. Springer, Heidelberg (1992)

    Google Scholar 

  33. Santoro, N.: Design and Analysis of Distributed Algorithms. Wiley Series on Parallel and Distributed Computing. Wiley-Interscience, Hoboken (2006)

    Book  Google Scholar 

  34. Mandelbrot, B.: Fractals, Form, Chance and Dimension. Freeman, San Francisco (1977)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Guan, LJ., Duckham, M. (2011). Decentralized Reasoning about Gradual Changes of Topological Relationships between Continuously Evolving Regions. In: Egenhofer, M., Giudice, N., Moratz, R., Worboys, M. (eds) Spatial Information Theory. COSIT 2011. Lecture Notes in Computer Science, vol 6899. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23196-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23196-4_8

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23195-7

  • Online ISBN: 978-3-642-23196-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics