Advertisement

ECOTOOL: A general MATLAB Forecasting Toolbox with Applications to Electricity Markets

  • Diego J. Pedregal
  • Javier Contreras
  • Agustín A. Sánchez de la Nieta
Chapter
Part of the Energy Systems book series (ENERGY)

Abstract

Electricity markets are composed of different agents that make their offers to sell and/or buy energy. These agents need forecasting tools to have an accurate prediction of the prices that they will face either in the day-ahead or long-term time spans. This work presents the ECOnometrics TOOLbox (ECOTOOL), a new MATLAB forecasting toolbox that embodies several tools for identification, validation and forecasting models based on time series analysis, among them, ARIMA, Exponential Smoothing, Unobserved Components, ARX, ARMAX, Transfer Function, Dynamic Regression and Distributed Lag models. The toolbox is presented in all its potentiality and several real case studies, both on the short and medium term, are shown to illustrate its applicability.

Keywords

ARIMA ARMAX ARX Dynamic regression Exponential smoothing MATLAB forecasting toolbox Transfer function 

Notes

Acknowledgments

This work was supported in part by the Spanish Ministry of Education grant ENE2009-09541 and the Junta de Comunidades de Castilla – La Mancha grants PII2I09-0154-7984 and PII1I09-0209-6050.

References

  1. 1.
    Weron R (2006) Modeling and forecasting electricity loads and prices: a statistical approach. Wiley, ChichesterCrossRefGoogle Scholar
  2. 2.
    Wang AJ, Ramsay B (1998) A neural network based estimator for electricity spot-pricing with particular reference to weekend and public holidays. Neurocomputing 23:47–57CrossRefGoogle Scholar
  3. 3.
    Amjadi N (2006) Day-ahead price forecasting of electricity markets by a new fuzzy neural network. IEEE Trans Power Syst 21:887–896CrossRefGoogle Scholar
  4. 4.
    Szkuta BR, Sanabria LA, Dillon TS (1999) Electricity price short-term forecasting using artificial neural networks. IEEE Trans Power Syst 14:851–857CrossRefGoogle Scholar
  5. 5.
    Fosso OB, Gjelsvik A, Haugstad A, Birger M, Wangensteen I (1999) Generation scheduling in a deregulated system. The Norwegian case. IEEE Trans Power Syst 14:75–81CrossRefGoogle Scholar
  6. 6.
    Contreras J, Espínola R, Nogales FJ, Conejo AJ (2003) ARIMA models to predict next-day electricity prices. IEEE Trans Power Syst 18:1014–1020CrossRefGoogle Scholar
  7. 7.
    Nogales FJ, Contreras J, Conejo AJ, Espínola R (2002) Forecasting next-day electricity prices by time series models. IEEE Trans Power Syst 17:342–348CrossRefGoogle Scholar
  8. 8.
    Garcia RC, Contreras J, van Akkeren M, Garcia JBC (2005) A GARCH forecasting model to predict day-ahead electricity prices. IEEE Trans Power Syst 20:867–874CrossRefGoogle Scholar
  9. 9.
    Byström H (2003) The hedging performance of electricity futures on the Nordic power exchange. Appl Econ 35:1–11CrossRefGoogle Scholar
  10. 10.
    Pedregal DJ, Young PC (2008) Development of improved adaptive approaches to electricity demand forecasting. J Oper Res Soc 59:1066–1076CrossRefGoogle Scholar
  11. 11.
    Trapero JR, Pedregal DJ (2009) Frequency domain methods applied to forecasting electricity markets. Energy Econ 31:727–735CrossRefGoogle Scholar
  12. 12.
    Pedregal DJ, Trapero JR (2010) Mid-term hourly electricity forecasting based on a multi-rate approach. Energy Convers Manage 51:105–111CrossRefGoogle Scholar
  13. 13.
    Conejo AJ, Contreras J, Espínola R, Plazas MA (2005) Forecasting electricity prices for a day-ahead pool-based electric energy market. Int J Forecasting 21:435–462CrossRefGoogle Scholar
  14. 14.
    Weron R, Misiorek A (2008) Forecasting electricity prices: a comparison of parametric and semiparametric time series models. Int J Forecasting 24:744–763CrossRefGoogle Scholar
  15. 15.
    Box GEP, Jenkins GM, Reinsel GC (1994) Time series analysis forecasting and control, 3rd edn. Prentice-Hall, Englewood CliffszbMATHGoogle Scholar
  16. 16.
    Hyndman RJ, Koehler AB, Ord JK, Snyder RD (2008) Forecasting with exponential smoothing. Springer, BerlinCrossRefzbMATHGoogle Scholar
  17. 17.
    Harvey AC (1989) Forecasting structural time series models and the Kalman filter. Cambridge University Press, CambridgeGoogle Scholar
  18. 18.
    Pedregal DJ, Young PC (2002) Statistical approaches to modelling and forecasting time series. In: Clements M, Hendry D (eds) Companion to economic forecasting. Blackwell, LondonGoogle Scholar
  19. 19.
    Kalman RE (1960) A new approach to linear filtering and prediction problems. ASME Trans J Basic Eng 83-D:95–108MathSciNetGoogle Scholar
  20. 20.
    Lütkepohl H (1991) Introduction to multiple time series analysis. Springer, HeidelbergCrossRefzbMATHGoogle Scholar
  21. 21.
    Tsay RS (1986) Time series model specification in the presence of outliers. J Am Stat Assoc 81:132–141CrossRefGoogle Scholar
  22. 22.
    Brown RG (1959) Statistical forecasting for inventory control. McGraw-Hill, New YorkzbMATHGoogle Scholar
  23. 23.
    Holt CC (1957) Forecasting seasonals and trends by exponentially weighted moving averages, ONR Research Memorandum 52, Pittsburgh, Carnegie Institute of TechnologyGoogle Scholar
  24. 24.
    Gardner ES Jr, McKenzie E (1985) Forecasting trends in time series. Manag Sci 31:1237–1246CrossRefzbMATHGoogle Scholar
  25. 25.
    Bryson AE, Ho YC (1969) Applied optimal control, optimization, estimation and control. Blaisdell Publishing, WalthamGoogle Scholar
  26. 26.
  27. 27.
    Iberian market energy operator, OMEL. http://www.omel.es
  28. 28.
  29. 29.
    Scientific Computing Associates, SCA, http://www.scausa.com
  30. 30.
    The Mathworks: MATLAB. http://www.mathworks.com

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Diego J. Pedregal
    • 1
  • Javier Contreras
    • 2
  • Agustín A. Sánchez de la Nieta
    • 3
  1. 1.E.T.S. de Ingenieros Industriales and Institute of Applied Mathematics to Science and Engineering (IMACI)University of Castilla – La ManchaCiudad RealSpain
  2. 2.E.T.S. de Ingenieros Industriales and Institute of Energy Research and Industrial Applications (INEI)University of Castilla – La ManchaCiudad RealSpain
  3. 3.E.T.S. de Ingenieros IndustrialesUniversity of Castilla – La ManchaCiudad RealSpain

Personalised recommendations