Optimization-Based Bidding in Day-Ahead Electricity Auction Markets: A Review of Models for Power Producers

  • Roy H. Kwon
  • Daniel Frances
Part of the Energy Systems book series (ENERGY)


We review some mathematical programming models that capture the optimal bidding problem that power producers face in day-ahead electricity auction markets. The models consider both price-taking and non-price taking assumptions. The models include linear and non-linear integer programming models, mathematical programs with equilibrium constraints, and stochastic programming models with recourse. Models are emphasized where the producer must self-schedule units and therefore must integrate optimal bidding with unit commitment decisions. We classify models according to whether competition from competing producers is directly incorporated in the model.


Auctions Bidding Day-ahead electricity markets Day-ahead markets Mathematical programming Unit commitment 


  1. 1.
    Faria E, Fleten S-E (2009) Day-ahead market bidding for a Nordic hydropower producer: taking the Elbas market into account, Comput Manage Sci. doi: 10.1007/s10287-009-0108-5, 8:75–101
  2. 2.
    Irastorza V, Fraser H (2002) Are ITP-run day-ahead markets needed? Electricity J 15(9):25–33CrossRefGoogle Scholar
  3. 3.
    Oren SS, Svoboda AJ, Johnson RB (1997) Volatility of unit commitment in competitive electricity markets. In: Proceedings of the thirtieth Hawaii international conference on system sciences, Maui, vol 5, pp 594–601Google Scholar
  4. 4.
    Hobbs BF (1985) Optimization methods for electric utility resource planning. Eur J Oper Res 83(1):1–20CrossRefGoogle Scholar
  5. 5.
    Ventosa M, Baillo A, Ramos A, Rivier M (2005) Electricity market modeling trends. Energ Policy 33:897–913CrossRefGoogle Scholar
  6. 6.
    Wallace SW, Fleten S-E (2003) Stochastic programming models in energy. In: Ruszczynski A, Shapiro A (eds) Handbooks in OR&MS, vol 10. Elsevier Science, Amsterdam, pp 637–677Google Scholar
  7. 7.
    Wen FS, David AK (2001) Strategic bidding for electricity supply in a day-ahead energy market. Electrical Power Syst Res 59:197–206CrossRefGoogle Scholar
  8. 8.
    Attaviriyanupap P, Kita H, Tanaka E, Hasegawa J (2005) New bidding strategy formulation for day-ahead energy and reserve markets based on evolutionary programming. Electrical Power Energy Syst 27:157–167CrossRefGoogle Scholar
  9. 9.
    Swinder DJ (2007) Simultaneous bidding in day-ahead auctions for spot energy and power systems reserve. Electrical Power Energy Syst 29:470–479CrossRefGoogle Scholar
  10. 10.
    Zhang D, Wang Y, Luh PB (2000) Optimization based bidding strategies in the deregulated market. IEEE Trans Power Syst 15(3):981–986CrossRefGoogle Scholar
  11. 11.
    Gross G, Finlay D (2000) Generation supply bidding in perfectly competitive electricity markets. Comput Math Organ Theory 6(1):83–98CrossRefGoogle Scholar
  12. 12.
    Guan X, Ho Y-C, Lai F (2001) An ordinal optimization based bidding strategy for electric power producers in the daily energy market. IEEE Trans Power Syst 16 (4):788–797CrossRefGoogle Scholar
  13. 13.
    Anderson EJ, Philpott AB (2002) Optimal offer construction in electricity markets. Math Oper Res 27(1):82–100MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Bakirtzis AG, Ziogos NP, Tellidou AC, Bakirtzis GA (2007) Electricity producer offering strategies in day-ahead energy market with step-wise offers. IEEE Trans Power Syst 22(4):1804–1818CrossRefGoogle Scholar
  15. 15.
    Lou ZQ, Pang JS, Ralph D (1996) Mathematical programming with equilibrium constraints. Cambridge University Press, New YorkGoogle Scholar
  16. 16.
    Hobbs BF, Metzler CB, Pang J-S (2000) Strategic gaming analysis for electric power systems: an MPEC approach. IEEE Trans Power Syst 15(2):638–645CrossRefGoogle Scholar
  17. 17.
    Pereira MV, Granville S, Fampa MC, Dix R, Barraso RA (2005) Strategic bidding under uncertainty. IEEE Trans Power Syst 20(1):180–188CrossRefGoogle Scholar
  18. 18.
    Weber JD, Overbye TJ (1999) A two-level optimization problem for analysis of market bidding strategies, In: Proceedings of the IEEE power engineering society summer meeting, vol 2. Edmonton, pp 1845–1849Google Scholar
  19. 19.
    Conejo AJ, Nogales FJ, Arroyo JM (2002) Price-taker bidding strategy under price uncertainty. IEEE Trans Power Syst 17(4):1081–1087CrossRefGoogle Scholar
  20. 20.
    De Ladurantaye D, Gendreau M, Potvin J-Y (2007) Strategic bidding for price-taking hydroelectricity producers. IEEE Trans Power Syst 22(4):2187–2203CrossRefGoogle Scholar
  21. 21.
    Gonzalez JG, Parrilla E, Mateo A (2007) Risk-averse profit – based optimal scheduling of a hydro-chain in the day-ahead electricity market. Eur J Oper Res 181:1354–1369CrossRefzbMATHGoogle Scholar
  22. 22.
    Rockafellar R, Uryasev S (2000) Optimization of conditional value-at risk. J Risk 2(3):21–41Google Scholar
  23. 23.
    Conejo AJ, Nogales FJ, Arroyo JM, Garcia-Bertrand R (2004) Risk-constrained self-scheduling of a thermal power producer. IEEE Trans Power Syst 19(3):1569–1574CrossRefGoogle Scholar
  24. 24.
    Dicorato M, Forte G, Trovato M, Caruso E (2009) Risk – constrained profit maximization in day-ahead electricity market. IEEE Trans Power Syst 24(3):1107–1114CrossRefGoogle Scholar
  25. 25.
    Kwon RH, Rogers JS, Yau S (2006) Stochastic programming models for replication of electricity forward contracts for industry. Nav Res Logistics 53(7):713–726MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Fleten S-E, Kristoffersen TK (2007) Stochastic programming for optimizing bidding strategies of a Nordic hydropower producer. Eur J Oper Res 181:916–928CrossRefzbMATHGoogle Scholar
  27. 27.
    Nowak MP, Schultz R, Westphalen M (2005) A stochastic integer programming model for incorporating day-ahead trading of electricity into hydro-thermal unit commitment. Optimization Eng 6:163–176MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Contreras J, Candiles O, de la Fuente JI, Gomez T (2001) Auction design in day-ahead electricity markets. IEEE Trans Power Syst 16(3):409–417CrossRefGoogle Scholar
  29. 29.
    Gountis VP, Bakirtzis AG (2004) Bidding strategies for electricity producers in a competitive electricity marketplace. IEEE Trans Power Syst 19(1):356–356CrossRefGoogle Scholar
  30. 30.
    Takriti S, Birge JR (1996) A stochastic model for the unit commitment problem. IEEE Trans Power Syst 11(3):1497–1506CrossRefGoogle Scholar
  31. 31.
    Yamin HY, Shahidehpour M (2004) Risk and profit in self – scheduling for GenCos. IEEE Trans Power Syst 19(4):2104–2106CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  • Roy H. Kwon
    • 1
  • Daniel Frances
    • 1
  1. 1.Department of Mechanical and Industrial EngineeringUniversity of TorontoTorontoCanada

Personalised recommendations