Advertisement

FPGA Framework for Agent Systems Using Dynamic Partial Reconfiguration

  • Edward Chen
  • Victor Gusev Lesau
  • Dorian Sabaz
  • Lesley Shannon
  • William A. Gruver
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6867)

Abstract

Dynamic Partial Reconfiguration of FPGAs enables tasks typically executed in software, such as threads and agents, to be executed directly in hardware. Typically, these systems use a CPU to manage the hardware and software tasks, but they do not take full advantage of the concurrency capable from an FPGA. This paper presents a hardware framework that leverages the concept of agents for FPGA-based designs. This enables not only the hardware modules to be viewed as agents, but also provides a means to selectively design and componentize the communications network for the hardware agents. The proposed framework enables hardware agents to be implemented to run concurrently and allows them to communicate with each other without requiring a CPU.

Keywords

Dynamic Partial Reconfiguration FPGA Hardware Abstraction Agent Systems 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Lee, D., Choi, A., Koo, J., Lee, J., Kim, B.: A Wideband DS-CDMA Modem for a Mobile Station. IEEE Transactions on Consumer Electronics 45(4), 1259–1269 (1999)CrossRefGoogle Scholar
  2. 2.
    Pirsch, P., Demassieux, N., Gehrke, W.: VLSI Architectures for Video Compression - A Survey. Proceedings of IEEE 83(2), 220–246 (1995)CrossRefGoogle Scholar
  3. 3.
    Ovaska, S., Vainio, O.: Evolutionary-programming-based Optimization of Reduced-rank Adaptive Filters for Reference Generation in Active Power Filters. IEEE Transactions on Industrial Electronics 51(4), 910–916 (2004)CrossRefGoogle Scholar
  4. 4.
    Chen, R., Chen, G., Chen, L.: System Design Consideration for Digital Wheelchair Controller. IEEE Transactions on Industrial Electronics 47(4), 898–907 (2000)CrossRefGoogle Scholar
  5. 5.
    Sridharan, K., Priya, T.: The Design of a Hardware Accelerator for Real-time Complete Visibility Graph Construction and Efficient FPGA Implementation. IEEE Transactions on Industrial Electronics 52(4), 1185–1187 (2005)CrossRefGoogle Scholar
  6. 6.
    Gabrick, M., Nicholson, R.: Winters. F., Young, B., Patton, J.: FPGA Considerations for Automotive Applications. In: Proceedings of SAE World Congress and Exhibition (2006)Google Scholar
  7. 7.
    Wang, J., Katz, R., Sun, J., Cronquist, B., McCollum, J., Speers, T., Plants, W.: SRAM based Reprogrammable FPGA for Space Applications. IEEE Transactions on Nuclear Science 46(6), 1728–1735 (1999)CrossRefGoogle Scholar
  8. 8.
    Lysaght, P., Blodget, B., Mason, J., Young, J., Bridgeford, B.: Enhanced Architecture, Design Methodologies and CAD tools for Dynamic Reconfiguration for Xilinx FPGAs. In: Proceedings of International Conference on Field Programmable Logic and Applications, Madrid, Spain, pp. 1–6 (2006)Google Scholar
  9. 9.
    Kao, C.: Benefits of Partial Reconfiguration. Xcell Journal, Fourth Quarter, Xilinx, Inc., 65–68 (2005)Google Scholar
  10. 10.
    Monmasson, E., Cristea, M.: FPGA Design Methodology for Industrial Control Systems – A Review. IEEE Transactions on Industrial Electronics 54(4), 1824–1842 (2007)CrossRefGoogle Scholar
  11. 11.
    Field Programmable Gate Arrays, http://en.wikipedia.org/wiki/fpga
  12. 12.
    Altera Corporation: FPGA Run-Time Reconfiguration: Two Approaches. White Paper 01055, version 1.0 (2008)Google Scholar
  13. 13.
    Wooldridge, M., Jenning, N.: Intelligent Agents – Theories, Architectures, and Languages. Lectures Notes in Artificial Intelligence (1995)Google Scholar
  14. 14.
    Parunak, H., Brueckner, S., Sauter, J.: Digital Pheromones for Coordination of Unmanned Vehicles. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 232–245. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  15. 15.
    Valckenaers, P., Holvoet, T.: An essential abstraction for managing complexity in MAS-based manufacturing. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 205–217. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  16. 16.
    Weyns, D., Schelfthout, K., Holvoet, T.: Exploiting a Virtual Environment in a Real-World Application. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2005. LNCS (LNAI), vol. 3830, pp. 218–234. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  17. 17.
    Bruecknerand, S., Parunak, H.: Swarming Distributed Pattern Detection and Classification. In: Weyns, D., Van Dyke Parunak, H., Michel, F. (eds.) E4MAS 2004. LNCS (LNAI), vol. 3374, pp. 232–245. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  18. 18.
    Ismail, A., Shannon. L.: FUSE: Front-end User Framework for OS Abstraction of Hardware Accelerators. In: IEEE Symposium on Field Programmable Custom Computing Machines, Salt Lake City, Utah, pp. 170–177 (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Edward Chen
    • 1
  • Victor Gusev Lesau
    • 1
  • Dorian Sabaz
    • 2
  • Lesley Shannon
    • 1
  • William A. Gruver
    • 1
    • 2
  1. 1.School of Engineering ScienceSimon Fraser UniversityBurnabyCanada
  2. 2.Intelligent Robotics CorporationNorth VancouverCanada

Personalised recommendations