Roles-Based MAS Applied to the Control of Intelligent Products in FMS

  • Cyrille Pach
  • Gabriel Zambrano
  • Emmanuel Adam
  • Thierry Berger
  • Damien Trentesaux
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6867)


This paper presents a formalization of a solution to control the myopia and its impact on performances of Flexible Manufacturing Systems (FMS) controlled by intelligent products. The model is based on the concept of the functional roles in Multi-Agent Systems which is described through a brief state of the art. Then this concept is applied to the control of a FMS. Entities, their roles, their knowledge and behaviors are explained in details. Finally, the proposed solution is implemented at the AIP-PRIMECA FMS of Valenciennes and some experimental results are given.


Multi-Agents Systems roles heterarchical architecture FMS intelligent product 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Trentesaux, D.: Distributed Control of Production Systems. Engineering Applications of Artificial Intelligenc 22, 971–978 (2009)CrossRefGoogle Scholar
  2. 2.
    Zambrano, G., Pach, C., Adam, E., Berger, T., Trentesaux, D.: Myopic Behavior in Heterarchical Control of FMS. In: IESM (2011)Google Scholar
  3. 3.
    Csaji, B., Monostori, L., Kadar, B.: Learning and cooperation in a distributed market-based production control system. In: Procs. of the 5th IWES, pp. 109–116 (2004)Google Scholar
  4. 4.
    Verstraete, P., Valckenaers, P., Van Brussel, H., Saint Germain, B., Hadeli, K., Van Belle, J.: Towards robust and efficient planning execution. Engineering Applications of Artificial Intelligence 21(3), 304–314 (2008)CrossRefGoogle Scholar
  5. 5.
    Weyns, D., Holvoet, T., Helleboogh, A.: Anticipatory vehicle routing using delegate multi-agent systems. In: ITSC 2007 IEEE, pp. 87–93 (2007)Google Scholar
  6. 6.
    Zambrano, G., Pach, C., Aissani, N., Berger, T., Trentesaux, D.: An Approach for Temporal Myopia Reduction in Heterarchical Control Architectures. In: ISIE (2011)Google Scholar
  7. 7.
    Adam, E., Berger, T., Sallez, Y., Trentesaux, D.: Role-based manufacturing control in a holonic multi-agent system. Int. J. of Prod. Research 49(5), 1455–1468 (2011)CrossRefGoogle Scholar
  8. 8.
    Boella, G., Steimann, F.: Roles and relationships in object-oriented programming. In: Multi-agent Systems and Ontologies: Report on the 2nd Workshop on Roles and Relationships ECOOP 2007, pp. 108–122. Springer, Heidelberg (2008)Google Scholar
  9. 9.
    Ferber, J., Gutknecht, O.: Aalaadin: a meta-model for the analysis and design of organizations in multi-agent systems. In: ICMAS 1998, pp. 128–135. IEEE Press, Los Alamitos (1998)Google Scholar
  10. 10.
    Zambonelli, F., Jennings, N.R., Wooldridge, M.: Developing multiagent systems: The gaia methodology. ACM Trans. Softw. Eng. Methodol. 12, 317–370 (2003)CrossRefGoogle Scholar
  11. 11.
    Leitao, P.: Agent-based distributed manufacturing control: a state-of-the-art survey, Eng. App. of Artificial Intell. 22, 979–991 (2009)CrossRefGoogle Scholar
  12. 12.
    Meyer, G., Framling, K., Holmstrom, J.: Intelligent Products: A survey. Computers in Industry 60, 137–148 (2009)CrossRefGoogle Scholar
  13. 13.
    Zbib, N., Pach, C., Sallez, Y., Trentesaux, D.: Heterarchical Production Control in Manufacturing Systems Using the Potential Fields Concept. Journal of Intelligent Manufacturing (2010) 10.1007/s10845-010-0467-3Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Cyrille Pach
    • 1
  • Gabriel Zambrano
    • 1
    • 2
  • Emmanuel Adam
    • 3
  • Thierry Berger
    • 1
  • Damien Trentesaux
    • 1
  1. 1.UVHC, TEMPO Lab.“Production, Services, Information” TeamValenciennesFrance
  2. 2.Department of Industrial EngineeringPontificia Universidad JaverianaBogotáColombia
  3. 3.UVHC, LAMIH-DIM FRE CNRS 3304ValenciennesFrance

Personalised recommendations