Skip to main content

Scale-Space Approaches to FTLE Ridges

  • Chapter
  • First Online:
Topological Methods in Data Analysis and Visualization II

Part of the book series: Mathematics and Visualization ((MATHVISUAL))

Abstract

The finite-time Lyapunov Exponent (FTLE) is useful for the visualization of time-dependent velocity fields. The ridges of this derived scalar field have been shown to correspond well to attracting or repelling material structures, so-called Lagrangian coherent structures (LCS). There are two issues involved in the computation of FTLE for this purpose. Firstly, it is often not practically possible to refine the grid for sampling the flow map until convergence of FTLE is reached. Slow conversion is mostly caused by gradient underestimation. Secondly, there is a parameter, the integration time, which has to be chosen sensibly. Both of these problems call for an examination in scale-space. We show that a scale-space approach solves the problem of gradient underestimation. We test optimal-scale ridges for their usefulness with FTLE fields, obtaining a negative result. However, we propose an optimization of the time parameter for a given scale of observation. Finally, an incremental method for computing smoothed flow maps is presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bauer, D., Peikert, R.: Vortex tracking in scale space. In: Ebert, D., Brunet, P., Navazo, I. (eds.) Data Visualization 2002: Proceedings of the 4th Joint Eurographics—IEEE TCVG Symposium on Visualization (VisSym 2002), Eurographics, pp. 233–240 (2002)

    Google Scholar 

  2. Benettin, G., Galgani, L., Giorgilli, A., Strelcyn, J.-M.: Lyapunov characteristic exponents for smooth dynamical systems and for Hamiltonian systems; a method for computing all of them. Part 1: theory. Meccanica 15, 9–20 (1980)

    Google Scholar 

  3. Brunton, S.L., Rowley, C.W.: Fast computation of finite-time Lyapunov exponent fields for unsteady flows. Chaos 20(1), 017503.1–017503.9 (2010)

    Google Scholar 

  4. Eberly, D.: Ridges in Image and Data Analysis. Computational Imaging and Vision. Kluwer Academic Publishers, Dordrecht (1996)

    MATH  Google Scholar 

  5. Florack, L., Kuijper, A.: The topological structure of scale-space images. J. Math. Imag. Vis. 11(1), 365–79 (2000)

    MathSciNet  Google Scholar 

  6. Garth, C., Gerhardt, F., Tricoche, X., Hagen, H.: Efficient computation and visualization of coherent structures in fluid flow applications. IEEE Trans. Visual. Comput. Graph. 13(6), 1464–1471 (2007)

    Article  Google Scholar 

  7. Garth, C., Wiebel, A., Tricoche, X., Joy, K., Scheuermann, G.: Lagrangian visualization of flow-embedded surface structures. Comput. Graph. Forum 27(3), 1007–1014 (2008)

    Article  Google Scholar 

  8. Haller, G.: Finding finite-time invariant manifolds in two-dimensional velocity fields. Chaos 10(1), 99–108 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  9. Haller, G.: Distinguished material surfaces and coherent structures in three-dimensional fluid flows. Physica D 149, 248–277 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haller, G.: Lagrangian coherent structures from approximate velocity data. Physics of Fluids 14, 1851–1861 (2002)

    Article  MathSciNet  Google Scholar 

  11. Haller, G.: A variational theory of hyperbolic Lagrangian coherent structures. Phys. D: Nonlinear Phenom. 240(7), 574–598 (2010)

    Article  Google Scholar 

  12. Haller, G., Yuan, G.: Lagrangian coherent structures and mixing in two-dimensional turbulence. Physica D 147(3), 352–370 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  13. Jimenez, R., Vankerschaver, J.: Optimization of FTLE Calculations Using nVidia’s CUDA. Technical Report, California Institute of Technology (2009)

    Google Scholar 

  14. Kasten, J., Petz, C., Hotz, I., Noack, B., Hege, H.-C.: Localized finite-time lyapunov exponent for unsteady flow analysis. In: Magnor, M., Rosenhahn, B., Theisel, H. (eds.) Vision Modeling and Visualization, vol. 1, pp. 265–274, Universität Magdeburg, Inst. f. Simulation u. Graph (2009)

    Google Scholar 

  15. Klein, T., Ertl, T.: Scale-space tracking of critical points in 3D vector fields. In: Hauser, H., Hagen, H., Theisel, H. (eds.) Topology-Based Methods in Visualization, pp. 35–49. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  16. Kindlmann, G.L., San Jose Estepar, R., Smith, S.M., Westin, C.-F.: Sampling and visualizing creases with scale-space particles. IEEE Trans. Visual. Comput. Graph. 15(6), 1415–1424 (2009)

    Google Scholar 

  17. Kinsner, M., Capson, D., Spence, A.: Scale-space ridge detection with GPU acceleration. In: Canadian Conference on Electrical and Computer Engineering, 2008. CCECE 2008, Niagara Falls, pp. 1527–1530 (2008)

    Google Scholar 

  18. Laramee, R., Hauser, H., Zhao, L., Post, F.: Topology-based flow visualization, the state of the art. In: Hauser, H., Hagen, H., Theisel, H. (eds.) Topology-Based Methods in Visualization, pp. 1–20. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  19. Lekien, F., Ross, S.D.: The computation of finite-time Lyapunov exponents on unstructured meshes and for non-Euclidean manifolds. Chaos 20(1), 017505.1–017505.20 (2010)

    Google Scholar 

  20. Lindeberg, T.: Scale-Space Theory in Computer Vision. The Kluwer International Series in Engineering and Computer Science. Kluwer Academic Publishers, Dordrecht (1994)

    Google Scholar 

  21. Lindeberg, T.: Scale-space: a framework for handling image structures at multiple scales. In: Proceedings of CERN School of Computing (1996).

    Google Scholar 

  22. Lindeberg T.: Edge detection and ridge detection with automatic scale selection. Int. J. Comput. Vis. 30(2), 117–154 (1998)

    Article  Google Scholar 

  23. Lipinski, D., Mohseni, K.: A ridge tracking algorithm and error estimate for efficient computation of Lagrangian coherent structures. Chaos 20(1), 017504.1–017504.9 (2010)

    Google Scholar 

  24. Peacock, T., Dabiri, J.: Introduction to focus issue: Lagrangian coherent structures. Chaos 20(1), 017501.1–017501.3 (2010)

    Google Scholar 

  25. Pobitzer, A., Peikert, R., Fuchs, R., Schindler, B., Kuhn, A., Theisel, H., Matkovic, K., Hauser, H.: On the way towards topology-based visualization of unsteady flow—the state of the art. In: Hauser, H., Reinhard, E. (eds.) State of the Art Reports, Eurographics Association, pp. 137–154 (2010)

    Google Scholar 

  26. Sadlo, F.: Computational Visualization of Physics and Topology in Unsteady Flow. Ph.D. Dissertation No. 19284, ETH Zurich (2010)

    Google Scholar 

  27. Sadlo, F., Peikert, R.: Efficient visualization of Lagrangian coherent structures by filtered AMR ridge extraction. IEEE Trans. Visual. Comput. Graph. 13(6), 1456–1463 (2007)

    Article  Google Scholar 

  28. Sadlo, F., Rigazzi, A., Peikert, R.: Time-dependent visualization of Lagrangian coherent structures by grid advection. In: Pascucci, V., Tricoche, X., Hagen, H., Tierny, J. (eds.) Topological Data Analysis and Visualization: Theory, Algorithms and Applications, pp. 151–166. Springer, Heidelberg (2010)

    Google Scholar 

  29. Schindler, B., Peikert, R., Fuchs, R., Theisel, H.: Ridge concepts for the visualization of Lagrangian coherent structures. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds.) Topological Methods in Data Analysis and Visualization II, Mathematics and Visualization, pp. 221-236, Springer, Heidelberg (2012)

    Google Scholar 

  30. Shadden, S., Lekien, F., Marsden, J.: Definition and properties of Lagrangian coherent structures from finite-time Lyapunov exponents in two-dimensional aperiodic flows. Phys. D: Nonlinear Phenom. 212, 271–304 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  31. Tang, W., Chan, P. W., Haller, G.: Accurate extraction of LCS over finite domains, with application to flight safety analysis over Hong Kong International Airport. Chaos 20(1), 017502.1–017502.8 (2010)

    Google Scholar 

Download references

Acknowledgements

We thank Filip Sadlo for the simulation of the air convection. The project SemSeg acknowledges the financial support of the Future and Emerging Technologies (FET) program within the Seventh Framework Program for Research of the European Commission, under FET-Open grant number 226042.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Raphael Fuchs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fuchs, R., Schindler, B., Peikert, R. (2012). Scale-Space Approaches to FTLE Ridges. In: Peikert, R., Hauser, H., Carr, H., Fuchs, R. (eds) Topological Methods in Data Analysis and Visualization II. Mathematics and Visualization. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23175-9_19

Download citation

Publish with us

Policies and ethics