Hierarchical Classification of OAI Metadata Using the DDC Taxonomy

  • Ulli Waltinger
  • Alexander Mehler
  • Mathias Lösch
  • Wolfram Horstmann
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6699)


In the area of digital library services, the access to subject-specific metadata of scholarly publications is of utmost interest. One of the most prevalent approaches for metadata exchange is the XML-based Open Archive Initiative (OAI) Protocol for Metadata Harvesting (OAI-PMH). However, due to its loose requirements regarding metadata content there is no strict standard for consistent subject indexing specified, which is furthermore needed in the digital library domain. This contribution addresses the problem of automatic enhancement of OAI metadata by means of the most widely used universal classification schemes in libraries—the Dewey Decimal Classification (DDC). To be more specific, we automatically classify scientific documents according to the DDC taxonomy within three levels using a machine learning-based classifier that relies solely on OAI metadata records as the document representation. The results show an asymmetric distribution of documents across the hierarchical structure of the DDC taxonomy and issues of data sparseness. However, the performance of the classifier shows promising results on all three levels of the DDC.


Digital Library Dewey Decimal Classification OAI-PMH SVM Hierarchical Classification 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Lagoze, C., Van de Sompel, H.: The open archives initiative: Building a low-barrier interoperability framework. In: Proceedings of the 1st ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 54–62. ACM, New York (2001)Google Scholar
  2. 2.
    Dublin Core Metadata Initiative, Dublin Core Metadata Element Set, Version 1.1 (2008)Google Scholar
  3. 3.
    Stvilia, B., Gasser, L., Twidale, M.B., Shreeves, S.L., Cole, T.W.: Metadata quality for federated collections. In: Proceedings of the 9th International Conference on Information Quality, ICIQ 2004, Cambridge, MA, pp. 111–125 (2004)Google Scholar
  4. 4.
    Tennant, R.: Digital libraries: Metadata’s bitter harvest. Library Journal 12 (2004)Google Scholar
  5. 5.
    Pieper, D., Summann, F.: Bielefeld Academic Search Engine (BASE): An end-user oriented institutional repository search service. Library Hi Tech. 24(4), 614–619 (2006)CrossRefGoogle Scholar
  6. 6.
    Dewey, M., Mitchell, J.S., Alex, H.: Dewey Dezimalklassifikation und Register: DDC 22, 22 edn. Saur, München (2005)CrossRefGoogle Scholar
  7. 7.
    Koller, D., Sahami, M.: Hierarchically classifying documents using very few words. In: ICML 1997: Proceedings of the Fourteenth International Conference on Machine Learning, pp. 170–178. Morgan Kaufmann Publishers Inc., San Francisco (1997)Google Scholar
  8. 8.
    Cutting, D., Karger, D., Pedersen, J., Tukey, J.W.: Scatter/gather: A cluster-based approach to browsing large document collections. In: Proceedings of the 15th Annual International ACM/SIGIR Conference, Copenhagen (1992)Google Scholar
  9. 9.
    Hearst, M.A., Pedersen, J.O.: Reexamining the cluster hypothesis:scatter/gather on retrieval results. In: Proceedings of SIGIR 1996, 19th ACM International Conference on Research and Development in Information Retrieval, Zurich, pp. 76–84 (1996)Google Scholar
  10. 10.
    Zamir, O., Etzioni, O.: Grouper: a dynamic clustering interface to web search results. In: Proceedings of the Eighth International World Wide Web Conference, Toronto (1999)Google Scholar
  11. 11.
    Stefanowski, J., Weiss, D.: Carrot\(^{\mbox{2}}\) and language properties in web search results clusterings. In: AWIC 2003. LNCS (LNAI), vol. 2663, Springer, Heidelberg (2003)Google Scholar
  12. 12.
    zu Eissen, S.M.:On Information Need and Categorizing Search. Dissertation, University of Paderborn (February 2007)Google Scholar
  13. 13.
    Stein, B., Meyer zu Eißen, S.: Automatic Document Categorization: Interpreting the Perfomance of Clustering Algorithms. In: Günter, A., Kruse, R., Neumann, B. (eds.) KI 2003. LNCS (LNAI), vol. 2821, pp. 254–266. Springer, Heidelberg (2003)CrossRefGoogle Scholar
  14. 14.
    Li, T., Zhu, S., Ogihara, M.: Topic hierarchy generation via linear discriminant projection. In: SIGIR 2003: Proceedings of the 26th Annual International ACM SIGIR Conference on Research and Development in Informaion Retrieval, pp. 421–422. ACM, New York (2003)CrossRefGoogle Scholar
  15. 15.
    Li, T., Zhu, S., Ogihara, M.: Hierarchical document classification using automatically generated hierarchy. J. Intell. Inf. Syst. 29(2), 211–230 (2007)CrossRefGoogle Scholar
  16. 16.
    Zhu, C., Ma, J., Zhang, D., Han, X., Niu, X.: Hierarchical document classification based on a backtracking algorithm. In: Proceedings of the Fifth International Conference on Fuzzy Systems and Knowledge Discovery, FSKD 2008, Jinan, Shandong, China, October 18-20, pp. 467–471 (2008)Google Scholar
  17. 17.
    Dumais, S., Chen, H.: Hierarchical classification of web content. In: SIGIR 2000: Proceedings of the 23rd Annual International ACM SIGIR Conference on Research and Development in Information Retrieval, pp. 256–263. ACM, New York (2000)Google Scholar
  18. 18.
    Hubrich, J.: CrissCross: SWD-DDC-Mapping. Mitteilungen der Vereinigung Österreichischer Bibliothekarinnen & Bibliothekare 61(3), 50–58 (2008)Google Scholar
  19. 19.
    Krowne, A., Halbert, M.: An initial evaluation of automated organization for digital library browsing. In: Proceedings of the 5th ACM/IEEE-CS Joint Conference on Digital Libraries, pp. 246–255. ACM, New York (2005)CrossRefGoogle Scholar
  20. 20.
    Hagedorn, K., Chapman, S., Newman, D.: Enhancing search and browse using automated clustering of subject metadata. D-Lib Magazine 13(7/8) (2007)Google Scholar
  21. 21.
    Wang, J.: An extensive study on automated Dewey Decimal Classification. Journal of the American Society for Information Science and Technology (JASIST) 60(11), 2269–2286 (2009)CrossRefGoogle Scholar
  22. 22.
    Mehler, A., Waltinger, U.: Enhancing document modeling by means of open topic models: Crossing the frontier of classification schemes in digital libraries by example of the DDC. Library Hi Tech. 27(4), 520–539 (2009)CrossRefGoogle Scholar
  23. 23.
    Dimitrov, D., Holst, M., Knauer, C., Kriegel, K.: Computing principal components dynamically. CoRR abs/0912.5380 (2009)Google Scholar
  24. 24.
    Mehler, A., Gleim, R., Ernst, A., Waltinger, U.: WikiDB: Building interoperable wiki-based knowledge resources for semantic databases. International Journal for Language Data Processing Sprache und Datenverarbeitung 32, 47–70 (2008)Google Scholar
  25. 25.
    Joachims, T.: Learning to Classify Text Using Support Vector Machines: Methods, Theory and Algorithms. Kluwer Academic Publishers, Norwell (2002)CrossRefGoogle Scholar
  26. 26.
    Salton, G., Buckley, C.: Term-weighting approaches in automatic text retrieval. Information Processing and Management 24(5), 513–523 (1988)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Ulli Waltinger
    • 1
  • Alexander Mehler
    • 2
  • Mathias Lösch
    • 1
  • Wolfram Horstmann
    • 1
  1. 1.Artificial Intelligence GroupBielefeld UniversityGermany
  2. 2.Institute of Computer Science Bielefeld University LibraryGoethe University FrankfurtGermany

Personalised recommendations