Skip to main content

Mining Multiple Biological Data for Reconstructing Signal Transduction Networks

  • Chapter
  • First Online:
Data Mining: Foundations and Intelligent Paradigms

Part of the book series: Intelligent Systems Reference Library ((ISRL,volume 25))

  • 1649 Accesses

Abstract

Signaling transduction networks (STNs) are the key means by which a cell converts an external signal (e.g. stimulus) into an appropriate cellular response (e.g. cellular rhythms of animals and plants). The essence of STN is underlain in some signaling features scattered in various data sources and biological components overlapping among STN. The integration of those signaling features presents a challenge. Most of previous works based on PPIs for STN did not take the signaling properties of signaling molecules and components overlapping among STN into account. This paper describes an effective computational method that can exploit three biological facts of STN applied to human: protein-protein interaction networks, signaling features and sharing components. To this end, we introduce a soft-clustering method for doing the task by exploiting integrated multiple data, especially signaling features, i.e., protein-protein interactions, signaling domains, domain-domain interactions, and protein functions. The gained results demonstrated that the method was promising to discover new STN and solve other related problems in computational and systems biology from large-scale protein interaction networks. Other interesting results of the early work on yeast STN are additionally presented to show the advantages of using signaling domain-domain interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Molecular Biology of the Cell. Garland Science (2007)

    Google Scholar 

  2. Alberts, B.: Molecular biology of the cell. Garland Science (2002)

    Google Scholar 

  3. Alfarano, C., Andrade, C.E., Anthony, K., Bahroos, N., Bajec, M., Bantoft, K., Betel, D., Bobechko, B., Boutilier, K., Burgess, E., Buzadzija, K., Cavero, R., D’Abreo, C., Donaldson, I., Dorairajoo, D., Dumontier, M.J., Dumontier, M.R., Earles, V., Farrall, R., Feldman, H., Garderman, E., Gong, Y., Gonzaga, R., Grytsan, V., Gryz, E., Gu, V., Haldorsen, E., Halupa, A., Haw, R., Hrvojic, A., Hurrell, L., Isserlin, R., Jack, F., Juma, F., Khan, A., Kon, T., Konopinsky, S., Le, V., Lee, E., Ling, S., Magidin, M., Moniakis, J., Montojo, J., Moore, S., Muskat, B., Ng, I., Paraiso, J.P., Parker, B., Pintilie, G., Pirone, R., Salama, J.J., Sgro, S., Shan, T., Shu, Y., Siew, J., Skinner, D., Snyder, K., Stasiuk, R., Strumpf, D., Tuekam, B., Tao, S., Wang, Z., White, M., Willis, R., Wolting, C., Wong, S., Wrong, A., Xin, C., Yao, R., Yates, B., Zhang, S., Zheng, K., Pawson, T., Ouellette, B.F.F., Hogue, C.W.V.: The Biomolecular Interaction Network Database and related tools 2005 update. Nucleic Acids Research 33(suppl. 1), D418–D424 (2005), http://nar.oxfordjournals.org/content/33/suppl_1/D418.abstract , doi :10.1093/nar/gki051

    Google Scholar 

  4. Allen, E.E., Fetrow, J.S., Daniel, L.W., Thomas, S.J., John, D.J.: Algebraic dependency models of protein signal transduction networks from time-series data. Journal of Theoretical Biology 238(2), 317–330 (2006)

    Article  MathSciNet  Google Scholar 

  5. Arnau, V., Mars, S., Marin, I.: Iterative Cluster Analysis of Protein Interaction Data. Bioinformatics 21(3), 364–378 (2005), http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/3/364

    Article  Google Scholar 

  6. Asthagiri, A.R., Lauffenburger, D.A.: Bioengineering models of cell signaling. Annual Review of Biomedical Engineering 2(1), 31–53 (2000), http://arjournals.annualreviews.org/doi/abs/10.1146/annurev.bioeng.2.1.31 , doi:10.1146/annurev.bioeng.2.1.31

    Article  Google Scholar 

  7. Asur, S., Ucar, D., Parthasarathy, S.: An ensemble framework for clustering protein protein interaction networks. Bioinformatics 23(13), i29–i40 (2007) doi:10.1093/bioinformatics/btm212

    Google Scholar 

  8. Bader, G.D., Hogue, C.W.: An automated method for finding molecular complexes in large protein interaction networks. BMC Bioinformatics 4(1), 2 (2003), http://dx.doi.org/10.1186/1471-2105-4-2 , doi:10.1186/1471-2105-4-2

    Article  Google Scholar 

  9. Bairoch, A., Apweiler, R., Wu, C., Barker, W., Boeckmann, B., Ferro, S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M., Natale, D., O’Donovan, C., Redaschi, N., Yeh, L.: The universal protein resource (uniprot). Nucleic Acids Research 33, D154–D159 (2005)

    Google Scholar 

  10. Bauer, A., Kuster, B.: Affinity purification-mass spectrometry: Powerful tools for the characterization of protein complexes. Eur. J. Biochem. 270(4), 570–578 (2003)

    Article  Google Scholar 

  11. Ben-Hur, A., Noble, W.S.: Kernel methods for predicting protein-protein interactions. Bioinformatics 21(suppl.1), i38–i46 (2005), http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/suppl1/i38 , doi: 10.1093/bioinformatics/bti1016

    Google Scholar 

  12. Bhalla, U.S.: Understanding complex signaling networks through models and metaphors. Progress in Biophysics and Molecular Biology 81(1), 45–65 (2003), http://www.sciencedirect.com/science/article/B6TBN-47C7506-3/2/2267fd452dc127061f9236c3d42067f0 , doi:10.1093/bioinformatics/bti1016

  13. Bock, J.R., Gough, D.A.: Predicting protein-protein interactions from primary structure. Bioinformatics 17(5), 455–460 (2001)

    Article  Google Scholar 

  14. Brown, K., Jurisica, I.: Unequal evolutionary conservation of human protein interactions in interologous networks. Genome Biology  8(5), R95 (2007), doi:10.1186/gb-2007-8-5-r95

    Google Scholar 

  15. Cannataro, M., Guzzi, P.H., Veltri, P.: Protein-to-protein interactions: Technologies, databases, and algorithms. ACM Comput. Surv. 1:1-1:36 (2010), http://doi.acm.org/10.1145/1824795.1824796 , DOI: http://doi.acm.org/10.1145/1824795.1824796

  16. Chatr-aryamontri, A., Ceol, A., Palazzi, L.M., Nardelli, G., Schneider, M.V., Castagnoli, L., Cesareni, G.: MINT: the Molecular INTeraction database. Nucl. Acids Res. 35(suppl.1), D572–D574 (2007), doi: 10.1093/nar/gkl950

    Google Scholar 

  17. Chen, X., Liu, M.: Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21(24), 4394–4400 (2005), doi:10.1093/bioinformatics/bti721

    Article  Google Scholar 

  18. Eungdamrong, N.J., Iyenga, R.: Modeling cell signaling networks. Biology of the Cell 96(5), 355–362 (2004)

    Article  Google Scholar 

  19. Finn, R.D., Marshall, M., Bateman, A.: iPfam: visualization of protein protein interactions in PDB at domain and amino acid resolutions. Bioinformatics 21(3), 410–412 (2005), http://bioinformatics.oxfordjournals.org/content/21/3/410.abstract , doi: 10.1093/bioinformatics/bti011

    Article  Google Scholar 

  20. Fukuda, K., Takagi, T.: Knowledge representation of signal transduction pathways. Bioinformatics 17(9), 829–837 (2001), doi:10.1093/bioinformatics/17.9.829

    Article  Google Scholar 

  21. Futschik, M., Carlisle, B.: Noise-robust soft clustering of gene expression time-course data. J. Bioinform. Comput. Biol. 3(4), 965–988 (2005)

    Article  Google Scholar 

  22. Gagneur, J., Casari, G.: From molecular networks to qualitative cell behavior. FEBS Letters 579(8), 1861–1871 (2005), http://www.sciencedirect.com/science/article/B6T36-4FG2TYJ-5/2/904b1a2f8f6bc73b06ab00e9e4bfe2f8 , doi: 10.1016/j.febslet.2005.02.007; System Biology

    Article  Google Scholar 

  23. Gagneur, J., Krause, R., Bouwmeester, T., Casari, G.: Modular decomposition of protein-protein interaction networks. Genome Biol. 5(8) (2004), http://dx.doi.org/10.1186/gb-2004-5-8-r57

  24. Getz, G., Levine, E., Domany, E.: Coupled two-way clustering analysis of gene microarray data. Proceedings of the National Academy of Sciences of the United States of America 97(22), 12079–12084 (2000), http://www.pnas.org/content/97/22/12079.abstract

    Article  Google Scholar 

  25. Gomez, S.M., Lo, S., Rzhetsky, A.: Probabilistic Prediction of Unknown Metabolic and Signal-Transduction Networks. Genetics 159(3), 1291–1298 (2001)

    Google Scholar 

  26. Hartuv, E., Shamir, R.: A clustering algorithm based on graph connectivity. Inf. Process. Lett. 76, 175–181 (2000), http://portal.acm.org/citation.cfm?id=364456.364469 , doi:10.1016/S0020-0190(00)00142-3

    Article  MATH  MathSciNet  Google Scholar 

  27. Ihekwaba, A.E., Nguyen, P.T., Priami, C.: Elucidation of functional consequences of signalling pathway interactions. BMC Bioinformatics 10(370)

    Google Scholar 

  28. Ito, T., Chiba, T., Ozawa, R., Yoshida, M., Hattori, M., Sakaki, Y.: A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001)

    Article  Google Scholar 

  29. Jansen, R., Yu, H., Greenbaum, D., Kluger, Y., Krogan, N.J., Chung, S., Emili, A., Snyder, M., Greenblatt, J.F., Gerstein, M.: A Bayesian Networks Approach for Predicting Protein-Protein Interactions from Genomic Data. Science 302(5644), 449–453 (2003), http://www.sciencemag.org/cgi/content/abstract/302/5644/449 , doi:10.1126/science.1087361

    Article  Google Scholar 

  30. Joshi-Tope, G., Gillespie, M., Vastrik, I., D’Eustachio, P., Schmidt, E., de Bono, B., Jassal, B., Gopinath, G., Wu, G., Matthews, L., Lewis, S., Birney, E., Stein, L.: Reactome: a knowledgebase of biological pathways. Nucl. Acids Res. 33(suppl.1), D428–D432 (2005), doi:10.1093/nar/gki072

    Google Scholar 

  31. King, A.D., Prulj, N., Jurisica, I.: Protein complex prediction via cost-based clustering. Bioinformatics 20(17), 3013–3020 (2004), http://bioinformatics.oxfordjournals.org/content/20/17/3013.abstract , doi:10.1093/bioinformatics/bth351

    Article  Google Scholar 

  32. Korcsmaros, T., Farkas, I.J., ad Petra Rovo, M.S.S., Fazekas, D., Spiro, Z., Bode, C., Lenti, K., Vellai, T., Csermely, P.: Uniformly curated signaling pathways reveal tissue-specific cross-talks and support drug target discovery. Bioinformatics 26(16), 2042–2050 (2010), http://bioinformatics.oxfordjournals.org/content/26/16/2042.abstract , doi:10.1093/bioinformatics/btq310

    Article  Google Scholar 

  33. Kumar, L., Futschik, M.: Mfuzz: A software package for soft clustering of microarray data. Bioinformation 2(1), 5–7 (2007)

    Google Scholar 

  34. Letunic, I., Doerks, T., Bork, P.: SMART 6: recent updates and new developments. Nucleic Acids Research 37(suppl. 1), D229–D232 (2009), http://nar.oxfordjournals.org/content/37/suppl_/D229.abstract , doi: 10.1093/nar/gkn808

    Google Scholar 

  35. Li, Y., Agarwal, P., Rajagopalan, D.: A global pathway crosstalk network. Bioinformatics 24(12), 1442–1447 (2008), doi: 10.1093/bioinformatics/btn200

    Article  Google Scholar 

  36. Lin, C., Cho, Y., Hwang, W., Pei, P., Zhang, A.: Clustering methods in protein-protein interaction network. In: Knowledge Discovery in Bioinformatics: Techniques, Methods and Application (2006)

    Google Scholar 

  37. Liu, Y., Zhao, H.: A computational approach for ordering signal transduction pathway components from genomics and proteomics data. BMC Bioinformatics 5(158) (2004), http://dx.doi.org/10.1186/1471-2105-5-158 , doi:10.1186/1471-2105-5-158

  38. Matthews, L.R., Vaglio, P., Reboul, J., et al.: Identification of potential interaction networks using sequence-based searches for conserved protein-protein interactions or ’interologs’. Genome Res. 11(12), 2120–2126 (2001)

    Article  Google Scholar 

  39. von Mering, C., Huynen, M., Jaeggi, D., Schmidt, S., Bork, P., Snel, B.: STRING: a database of predicted functional associations between proteins. Nucleic Acids Research 31(1), 258–261 (2003), http://nar.oxfordjournals.org/content/31/1/258.abstract , doi:10.1093/nar/gkg034

    Article  Google Scholar 

  40. Neves, S.R., Iyengar, R.: Modeling Signaling Networks. Sci. STKE 2005(281), tw157 (2005), http://stke.sciencemag.org/cgi/content/abstract/sigtrans;2005/281/tw157 , doi:10.1126/stke.2812005tw157

  41. Ng, S.K., Tan, S.H.: Discovering protein-protein interactions. Journal of Bioinformatics and Computational Biology 1(4), 711–741 (2003)

    Article  Google Scholar 

  42. Nguyen, T., Ho, T.: Discovering signal transduction networks using signaling domain-domain interactions. Genome Informatics 17(2), 35–45 (2006)

    Google Scholar 

  43. Nguyen, T., Ho, T.: An Integrative Domain-Based Approach to Predicting Protein-Protein Interactions. Journal of Bioinformatics and Computational Biology 6 (2008)

    Google Scholar 

  44. Nicolau, M., Tibshirani, R., Brresen-Dale, A.L., Jeffrey, S.S.: Disease-specific genomic analysis: identifying the signature of pathologic biology. Bioinformatics 23(8), 957–965 (2007), http://bioinformatics.oxfordjournals.org/content/23/8/957.abstract , doi:10.1093/bioinformatics/btm033

    Article  Google Scholar 

  45. Pagel, P., Kovac, S., Oesterheld, M., Brauner, B., Dunger-Kaltenbach, I., Frishman, G., Montrone, C., Mark, P., Stumpflen, V., Mewes, H.W., Ruepp, A., Frishman, D.: The MIPS mammalian protein-protein interaction database. Bioinformatics 21(6), 832–834 (2005), http://bioinformatics.oxfordjournals.org/cgi/content/abstract/21/6/832 , doi: 10.1093/bioinformatics/bti115

    Article  Google Scholar 

  46. Pawson, T., Raina, M., Nash, N.: Interaction domains: from simple binding events to complex cellular behavior. FEBS Letters 513(1), 2–10 (2002)

    Article  Google Scholar 

  47. Pellegrini, M., Marcotte, E.M., Thompson, M.J., et al.: Assining protein functions by comparative genome analysis: Protein phylogenetic profiles. Proc. Natl. Acad. Sci. USA 96(8), 4285–4288 (1999)

    Article  Google Scholar 

  48. Pereira-Leal, J.B., Enright, A.J., Ouzounis, C.A.: Detection of functional modules from protein interaction networks. Proteins: Structure, Function, and Bioinformatics 54(1), 49–57 (2004), http://dx.doi.org/10.1002/prot.10505 , doi:10.1002/prot.10505

    Article  Google Scholar 

  49. Priami, C.: Algorithmic systems biology. Commun. ACM 52, 80–88 (2009)

    Article  Google Scholar 

  50. Rives, A.W., Galitski, T.: Modular organization of cellular networks, vol. 100(3), pp. 1128–1133 (2003), http://www.pnas.org/content/100/3/1128.abstract , doi:10.1073/pnas.0237338100

  51. Salwinski, L., Miller, C.S., Smith, A.J., Pettit, F.K., Bowie, J.U., Eisenberg, D.: Dip: The database of interacting proteins: 2004 update. Nucleic Acids Research 32, 449–451 (2004)

    Article  Google Scholar 

  52. Samanta, M.P., Liang, S.: Predicting protein functions from redundancies in large-scale protein interaction networks. Proceedings of the National Academy of Sciences of the United States of America 100(22), 12,579–12,583 (2003), doi:10.1073/pnas.2132527100

    Google Scholar 

  53. Scott, J.D., Pawson, T.: Cell communication: The inside story. Scientific American (2000)

    Google Scholar 

  54. Smith, G.P.: Filamentous fusion phage: Novel expression vectors that display cloned antigens on the virion surface. Science 228(4705), 1315–1317 (1985)

    Article  Google Scholar 

  55. Spirin, V., Mirny, L.A.: Protein complexes and functional modules in molecular networks. In: Proceedings of the National Academy of Sciences of the United States of America, vol. 100(21), 21, 123–12,128 (2003), 32324100, http://www.pnas.org/content/100/21/12123.abstract , doi:10.1073/pnas.20

  56. Sprinzak, E., Margalit, H.: Correlated sequence-signatures as markers of protein-protein interaction. Journal of Molecular Biology 311(4), 681–692 (2001)

    Article  Google Scholar 

  57. Steffen, M., Petti, A., Aach, J., D’haeseleer, P., Church, G.: Automated modelling of signal transduction networks. BMC Bioinformatics 3(34) (2002)

    Google Scholar 

  58. Ucar, D., Asur, S., Catalyurek, U.V., Parthasarathy, S.: Improving functional modularity in protein-protein interactions graphs using hub-induced subgraphs. In: Fürnkranz, J., Scheffer, T., Spiliopoulou, M. (eds.) PKDD 2006. LNCS (LNAI), vol. 4213, pp. 371–382. Springer, Heidelberg (2006), doi: 10.1093/bioinformatics/btm212

    Chapter  Google Scholar 

  59. Uetz, P., Giot, L., Cagney, G., Mansfield, T.A., Judson, R.S., Knight, J.R., Lockshon, D., Narayan, V., Srinivasan, M., Pochart, P., Qureshi-Emili, A., Li, Y., Godwin, B., Conover, D., Kalbfleisch, T., Vijayadamodar, G., Yang, M., Johnston, M., Fields, S., Rothberg, J.M.: A comprehensive analysis of protein-protein interactions in saccharomyces cerevisiae. Nature 403(6770), 623–627 (2000), http://dx.doi.org/10.1038/35001009 , doi:10.1038/35001009

    Article  Google Scholar 

  60. Uetz, P., Vollert, C.: Protein-Protein Interactions. Encyclopedic Reference of Genomics and Proteomics in Molecular Medicine 17 (2006)

    Google Scholar 

  61. Van Dongen, S.: A new cluster algorithm for graphs. Tech. Rep. Technical Report INS-R0010, Center for Mathematics and Computer Science (CWI), Amsterdam (2000)

    Google Scholar 

  62. Zhao, X., Wang, R., Chen, L., Aihara, K.: Automatic modeling of signal pathways from protein-protein interaction networks. In: The Sixth Asia Pacific Bioinformatics Conference, pp. 287–296 (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thanh-Phuong Nguyen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nguyen, TP., Ho, TB. (2012). Mining Multiple Biological Data for Reconstructing Signal Transduction Networks. In: Holmes, D., Jain, L. (eds) Data Mining: Foundations and Intelligent Paradigms. Intelligent Systems Reference Library, vol 25. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23151-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23151-3_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23150-6

  • Online ISBN: 978-3-642-23151-3

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics