Skip to main content

Structural Investigation of a Series of Inorganic Azides

Part 2: NH4N3, AgN3 and Pb(N3)2

  • Chapter
  • First Online:
  • 1015 Accesses

Part of the book series: Springer Theses ((Springer Theses))

Abstract

The structure of ammonium azide is also based on a modification of the basic CsCl cubic structure although hydrogen bonding plays a dominant role in the distortion. The azide anions are broadly organised into layers, but half of the anions are rotated out of the plane to allow hydrogen bonding between the ammonium ion and the negative termini of the azide ions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Frevel LK (1936) Z Kristallogr 94:197

    CAS  Google Scholar 

  2. Waddington TC (1958) J Chem Soc 4340

    Google Scholar 

  3. Prince E, Choi CS (1978) Acta Cryst B34:2606

    CAS  Google Scholar 

  4. de Amorim HS, do Amaral MR Jr, Pattison P, Ludka IP, Mendes JC (2002) Rev Soc Quim Mex 4:313

    Google Scholar 

  5. Reckeweg O, Simon A (2003) Z Naturforsch 58:1097

    CAS  Google Scholar 

  6. Dows DA, Whittle E, Pimentel GC (1955) J Chem Phys 23:1475

    Article  CAS  Google Scholar 

  7. Ng WL, Field JE (1985) Thermochim Acta 84:133

    Article  CAS  Google Scholar 

  8. Müller U (1973) Strukturchemie der Azide, in Structure and Bonding, Inorganic Chemistry, vol. 14. Springer, Berlin

    Google Scholar 

  9. Waddington TC (1959) J Chem Soc 2499

    Google Scholar 

  10. Marr HE III, Jr Stanford RH (1962) Acta Cryst 15:1313

    Article  CAS  Google Scholar 

  11. Guo GC, Wang QM, Mak TCW (1999) J Chem Crystallogr 29:561

    Article  CAS  Google Scholar 

  12. West CD (1936) Z Kristallogr 95:421

    CAS  Google Scholar 

  13. Bryant JI, Brooks RL (1971) J Chem Phys 54:5315

    Article  CAS  Google Scholar 

  14. Dehnicke K (1974) Z Anorg Allg Chem 409:311

    Article  CAS  Google Scholar 

  15. Pereira CM, Chaudhri MM (1988) Philos Mag A 57:173

    Google Scholar 

  16. Schmidt CL, Dinnebier R, Wedig U, Jansen M (2007) Inorg Chem 46: 

    Google Scholar 

  17. Diamant GM, Saprykin AE, Sidorin YY (1989) React Solids 7:375

    Article  CAS  Google Scholar 

  18. Pereira CM, Chaudhri MM (1989) J Energ Mater 7:297

    Article  Google Scholar 

  19. Zhu W, Xiao H (2007) J Solid State Chem 180:3521

    Article  CAS  Google Scholar 

  20. Lamnevik S, Söderquist R (1964) FOA Report A 1174 - F110

    Google Scholar 

  21. Miles FD (1931) J Chem Soc 2532

    Google Scholar 

  22. Hattori K, McCrone W (1956) Anal Chem 28:1792

    Article  CAS  Google Scholar 

  23. Taylor GWC, Thomas AT (1968) J Cryst Growth 3–4:391

    Article  Google Scholar 

  24. Azaroff LV (1956) Z Kristallogr 107:362

    Article  CAS  Google Scholar 

  25. Hattori K, McCrone W (1956) Anal Chem 28:1791

    Article  CAS  Google Scholar 

  26. Choi CS, Boutin HP (1969) Acta Cryst B25:982

    Google Scholar 

  27. Glen GL (1963) J Am Chem Soc 85:3892

    Article  CAS  Google Scholar 

  28. Choi CS, Prince E, Garrett WL (1977) Acta Cryst B33:3536

    CAS  Google Scholar 

  29. Iqbal Z, Garrett W, Brown CW, Mitra SS (1971) J Chem Phys 55:4528

    Article  CAS  Google Scholar 

  30. Zhu W, Xiao H (2006) J Phys Chem B 110:18196

    Article  CAS  Google Scholar 

  31. Mauer FA, Hubbard CR, Hahn TA (1974) J Chem Phys 60:1341

    Article  CAS  Google Scholar 

  32. Weir CE, Block S, Piermarini GJ (1970) J Chem Phys 53:4265

    Article  CAS  Google Scholar 

  33. Perger WF (2010) Int J Quantum Chem 110:1916

    CAS  Google Scholar 

  34. Richter TA (1977) Synthesis and chemical properties, in energetic materials. In: Fair HD, Walker RF (eds) Physics and Chemistry of the Inorganic Azides, vol 1. Plenum Press, New York

    Google Scholar 

  35. Marshall WG, Francis DJ (2002) J Appl Crystallogr 35:122

    Article  CAS  Google Scholar 

  36. Fortes AD (2004) PhD Thesis, Department of Earth Sciences, University College, London

    Google Scholar 

  37. Besson JM, Nelmes RJ, Hamel G, Loveday JS, Weill G, Hull S (1992) Physica B 180–181:907

    Article  Google Scholar 

  38. Von Dreele R, Larson AC (1986) General structure analysis system (GSAS)

    Google Scholar 

  39. Angel RJ (2000) Equations of State. In: Hazen RM, Downs RT (eds) Reviews in mineralogy and geochemistry, 41: high-temperature and high-pressure crystal chemistry. Mineralogical Society of America, Washington D.C.

    Google Scholar 

  40. Chapman KW, Chupas PJ (2007) J Am Chem Soc 129:10090

    Article  CAS  Google Scholar 

  41. Chapman KW, Halder GJ, Chupas PJ (2009) J Am Chem Soc 131:17546

    Article  CAS  Google Scholar 

  42. Vinet P, Ferrante J, Smith JR, Rose JH (1986) J.Phys C: Solid State Phys 19:L467

    Article  CAS  Google Scholar 

  43. Sheppard SE, Vanselow W (1929) J Phys Chem 33:250

    Article  CAS  Google Scholar 

  44. Abid JP, Wark AW, Brevet PF, Girault HH (2002) Chem Commun 38:792

    Article  Google Scholar 

  45. Mikhailov OV, Kondakov AV, Krikunenko RI (2005) High Energy Chem. 39:324

    Article  CAS  Google Scholar 

  46. Wohler L (1912) Chem Ztg 35:1096

    CAS  Google Scholar 

  47. Surovoi EP, Sirik SM, Zakharov YA, Bugerko LN, Kilina IK (2000) Zhurnal Nauchnoi i Prikladnoi Fotografii 45:14

    CAS  Google Scholar 

  48. Surovoi EP, Sirik SM, Bugerko LN (2008) Materialovedenie 5:40

    Google Scholar 

  49. Von Dreele R (2010) personal communication

    Google Scholar 

  50. Schiferl D, Cromer DT, Ryan RR, Larson AC, LeSar R, Mills RL (1983) Acta Cryst C39:1151

    CAS  Google Scholar 

  51. Belak J, LeSar R, Etters RD (1990) J Chem Phys 92:5430

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. A. Millar .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Millar, D.I.A. (2012). Structural Investigation of a Series of Inorganic Azides. In: Energetic Materials at Extreme Conditions. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23132-2_6

Download citation

Publish with us

Policies and ethics