Skip to main content

High-Pressure Structural Studies of CL-20

(2,4,6,8,10,12-hexanitrohexaazaisowurtzitane)

  • Chapter
  • First Online:
Book cover Energetic Materials at Extreme Conditions

Part of the book series: Springer Theses ((Springer Theses))

Abstract

2,4,6,8,10,12-hexanitrohexaazaisowurtzitane (HNIW, more commonly known as CL-20 after the China Lake Research Facility, USA) was first synthesised in the late 1980s although the detailed synthetic procedure was only published in 1998. CL-20 is a polycyclic nitramine with six nitro groups bonded to an isowurtzitane cage. The low ratio of carbon atoms to nitramine moieties, combined with the inherent strain in the isowurtzitane cage and the increased density (with respect to its monocyclic analogue) have led to CL-20 being characterised as “the densest and most energetic explosive known.” It is not surprising therefore that a significant amount of research has been aimed at assessing its explosive performance, sensitivity and thermal properties. Furthermore spectroscopic and diffraction techniques have been used to explore the rich polymorphism of CL-20.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Although the experimental values are within the limits of experimental error of each other, it is believed that the current study does indeed represent a smaller value of B0. However, it would be extremely desirable to obtain more compression data, particularly in the low pressure (0–1 GPa) regime, in order to increase the precision of this value.

References

  1. Nielsen AT (1987) Synthesis of caged nitramine explosives. In: Joint army, Navy, NASA, Air Force (JANNAF) Propulsion Meeting, San Diego, USA

    Google Scholar 

  2. Nielsen AT, Chafin AP, Christian SL, Moore DW, Nadler MP, Nissan RA, Vanderah DJ, Gilardi RD, George CF, Flippen-Anderson JL (1998) Tetrahedron 54:11793

    CAS  Google Scholar 

  3. Miller RS (1995) In: Decomposition, combustion and detonation chemistry of energetic materials, Pittsburgh, USA

    Google Scholar 

  4. Simpson RL, Urtiew PA, Ornellas DL, Moody GL, Scribner KJ, Hoffman DM (1997) Propellants Explos Pyrotech 22:249

    Article  CAS  Google Scholar 

  5. Bazaki H, Kawabe S, Miya H, Kodama T (1998) Propellants Explos Pyrotech 23:333

    Article  CAS  Google Scholar 

  6. Foltz MF, Coon CL, Garcia F, Nichols AL III (1994) Propellants Explos Pyrotech 19:19

    Article  CAS  Google Scholar 

  7. Foltz MF, Coon CL, Garcia F, Nichols AL III (1994) Propellants Explos Pyrotech 19:133

    Article  CAS  Google Scholar 

  8. Nedelko VV, Chukanov NV, Raevskii AV, Korsounskii BL, Larikova TS, Kolesova OI, Volk F (2000) Propellants Explos Pyrotech 25:255

    Article  CAS  Google Scholar 

  9. Yee RY, Nadler MP, Nielsen AT (1990) In: JANNAF Propulsion Meeting, Anaheim, USA

    Google Scholar 

  10. Kraeutle KJ (1998) In: JANNAF Propulsion Meeting, Huntsville, USA

    Google Scholar 

  11. Kraeutle KJ (1990) In: JANNAF Propulsion Meeting, Cheyenne, USA

    Google Scholar 

  12. Russell TP, Miller PJ, Piermarini GJ, Block S (1992) J Phys Chem 96:5509

    Article  CAS  Google Scholar 

  13. Golovina N, Raevskii A, Chukanov N, Korsounskii B, Atovyman L, Aldoshin S (2004) Rossijskij Khimicheskij Zhurnal 48:41

    CAS  Google Scholar 

  14. Kholod Y, Okovytyy S, Kuramshina G, Qasim M, Gorb L, Leszczynski J (2007) J Mol Struct 843:14

    Article  CAS  Google Scholar 

  15. Goede P, Latypov NV, Östmark H (2004) Propellants Explos Pyrotech 29:205

    Article  CAS  Google Scholar 

  16. Kim JH, Park YC, Yim YJ, Han JS (1998) J Chem Eng Jpn 31:478

    Article  CAS  Google Scholar 

  17. Hoffman DM (2003) Propellants Explos Pyrotech 28:194

    Article  CAS  Google Scholar 

  18. Lee MH, Kim JH, Park YC, Hwang JH, Kim WS (2007) Ind Eng Chem Soc 46:1500

    CAS  Google Scholar 

  19. Russell TP, Miller PJ, Piermarini GJ, Block S (1993) J Phys Chem 97:1993

    Article  CAS  Google Scholar 

  20. Li J, Brill TB (2007) Propellants Explos Pyrotech 32:326

    Article  CAS  Google Scholar 

  21. Zhou G, Wang J, He WD, Wong NB, Tian A, Li WK (2002) J Mol Struct THEOCHEM 589–590:273

    Article  Google Scholar 

  22. Xu XJ, Zhu WH, Xiao HM (2007) J Phys Chem B 111:2090

    Article  CAS  Google Scholar 

  23. Chukanov N, Zakharov V, Korsunskii B, Raevskii A, Nedelko V, Vozchikova S, Larikova T, Golovina N, Aldoshin S (2009) Russ J Phys Chem A 83:29

    Article  CAS  Google Scholar 

  24. Chukanov N, Dubovitskii V, Zakharov V, Golovina N, Korsunskii B, Vozchikova S, Nedelko V, Larikova T, Raevskii A, Aldoshin S (2009) Russ J Phys Chem B 3:486

    Article  Google Scholar 

  25. Russell TP, Miller PJ, Piermarini GJ, Block S (1992) J Phys Chem 96:5509

    Article  CAS  Google Scholar 

  26. Sorescu DC, Rice BM (2010) J Phys Chem C 114:6734

    Article  CAS  Google Scholar 

  27. Gump JC, Peiris SM (2006) Proc Int Det Symposium U S A 1045

    Google Scholar 

  28. Gump JC, Stoltz CA, Peiris SM (2007) AIP Conf Proc 955:127

    Article  Google Scholar 

  29. Gump JC, Peiris SM (2008) J Appl Phys 104:083509

    Article  Google Scholar 

  30. Ciezak JA, Jenkins TA, Liu Z (2007) Propellants Explos Pyrotech 32:2774

    Article  Google Scholar 

  31. Merrill L, Bassett WA (1974) Rev Sci Instrum 45:290

    Article  Google Scholar 

  32. Piermarini GJ, Block S, Barnett JD, Forman RA (1975) J Appl Phys 46:2774

    Article  CAS  Google Scholar 

  33. Hammersley AP, Svensson SO, Hanfland M, Fitch AN, Hausermann D (1996) High Press Res 14:235

    Article  Google Scholar 

  34. Favre-Nicolin V, Cerny R (2002) J Appl Crystallogr 35:734

    Article  CAS  Google Scholar 

  35. Von Dreele R, Larson AC (1986) General Structure Analysis System (GSAS)

    Google Scholar 

  36. Marshall WG, Francis DJ (2002) J Appl Crystallogr 35:122

    Article  CAS  Google Scholar 

  37. Besson JM, Nelmes RJ, Hamel G, Loveday JS, Weill G, Hull S (1992) Physica B 180–181:907

    Article  Google Scholar 

  38. Moggach SA, Allan DR, Parsons S, Warren JE (2008) J Appl Crystallogr 41:249

    Article  CAS  Google Scholar 

  39. Dawson A, Allan DR, Parsons S, Ruf M (2004) J Appl Crystallogr 37:410

    Article  CAS  Google Scholar 

  40. Bruker-Nonius (2000) APEX-II, Bruker-AXS, Madison, WI, USA

    Google Scholar 

  41. Bruker-AXS (2003) SAINT, Bruker-AXS, Madison, WI, USA

    Google Scholar 

  42. Parsons S (2004) SHADE program for empirical absorption corrections to high pressure data, The University of Edinburgh, UK

    Google Scholar 

  43. Sheldrick GM (2004) SADABS, University of Göttingen, Germany

    Google Scholar 

  44. Altomare A, Cascarano G, Giacovazzo C, Guagliardi A, Burla MC, Polidori G, Camalli M (1994) J Appl Crystallogr 27:435

    Google Scholar 

  45. Betteridge PW, Carruthers JR, Cooper RI, Prout K, Watkin DJ (2003) J Appl Crystallogr 36:1487

    Article  CAS  Google Scholar 

  46. Cosier J, Glazer AM (1986) J Appl Crystallogr 19:105

    Article  CAS  Google Scholar 

  47. Oxford Diffraction Ltd (2010) CrysalisPRO software, Abingdon, UK

    Google Scholar 

  48. Sorescu DC, Rice BM, Thompson DL (1999) J Phys Chem B 103:6783

    Article  CAS  Google Scholar 

  49. Angel RJ, Bujak M, Zhao J, Gatta GD, Jacobsen SD (2007) J Appl Crystallogr 40:26

    Article  CAS  Google Scholar 

  50. Varga T, Wilkinson AP, Angel RJ (2003) Rev Sci Instrum 74:4564

    Article  CAS  Google Scholar 

  51. Akhavan J (2004) The chemistry of explosives, 2nd edn. Royal Society of Chemistry, Cambridge, pp 43–44

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David I. A. Millar .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Millar, D.I.A. (2012). High-Pressure Structural Studies of CL-20. In: Energetic Materials at Extreme Conditions. Springer Theses. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23132-2_4

Download citation

Publish with us

Policies and ethics