Advertisement

What Signal Processing Can Do for the Music

  • Isabel Barbancho
  • Lorenzo J. Tardón
  • Ana M. Barbancho
  • Andrés Ortiz
  • Simone Sammartino
  • Cristina de la Bandera
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6684)

Abstract

In this paper, several examples of what signal processing can do in the music context will be presented. In this contribution, music content includes not only the audio files but also the scores. Using advanced signal processing techniques, we have developed new tools that will help us handling music information, preserve, develop and disseminate our cultural music assets and improve our learning and education systems.

Keywords

Music Signal Processing Music Analysis Music Transcription Music Information Retrieval Optical Music Recognition Pitch Detection 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arduino board, http://www.arduino.cc (last viewed February 2011)
  2. 2.
    Atmel corporation web side, http://www.atmel.com (last viewed February 2011)
  3. 3.
    Aliev, R.: Soft Computing and its Applications. World Scientific Publishing Company, Singapore (2001)CrossRefGoogle Scholar
  4. 4.
    Barbancho, A.M., Barbancho, I., Fernandez, J., Tardón, L.J.: Polyphony number estimator for piano recordings using different spectral patterns. In: 128th Audio Engineering Society Convention (AES 2010), London, UK (2010)Google Scholar
  5. 5.
    Barbancho, A.M., Tardón, L., Barbancho, I.: CDMA systems physical function level simulation. In: IASTED International Conference on Advances in Communication, Rodas, Greece (2001)Google Scholar
  6. 6.
    Barbancho, A.M., Tardón, L.J., Barbancho, I.: PIC detector for piano chords. EURASIP Journal on Advances in Signal Processing (2010)Google Scholar
  7. 7.
    Barbancho, I., Tardón, L.J., Barbancho, A.M., Sammartino, S.: Pitch and played string estimation in classic and acoustic guitars. In: Proc. of the 126th Audio Engineering Society Convention (AES 126th), Munich, Germany (May 2009)Google Scholar
  8. 8.
    Barbancho, I., Bandera, C., Barbancho, A.M., Tardón, L.J.: Transcription and expressiveness detection system for violin music. In: IEEE Int. Conf. on Acoustics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, pp. 189–192 (2009)Google Scholar
  9. 9.
    Barbancho, I., Segura, C., Tardón, L.J., Barbancho, A.M.: Automatic selection of the region of interest in ancient scores. In: IEEE Mediterranean Electrotechnical Conference (MELECON 2010), Valletta, Malta (May 2010)Google Scholar
  10. 10.
    Bello, J.: Automatic piano transcription using frequency and time-domain information. IEEE Transactions on Audio, Speech and Language Processing 14(6), 2242–2251 (2006)CrossRefGoogle Scholar
  11. 11.
    Boo, W., Wang, Y., Loscos, A.: A violin music transcriber for personalized learning. In: IEEE Int. Conf. on Multimdia and Expo. (ICME), Toronto, Canada, pp. 2081–2084 (2006)Google Scholar
  12. 12.
    Dixon, S., Pampalk, E., Widmer, G.: Classification of dance music by periodicity patterns. In: Proceedings of the International Conference on Music Information Retrieval (ISMIR 2003), October 26-30, pp. 159–165. John Hopkins University, Baltimore, USA (2003)Google Scholar
  13. 13.
    Ellis, D.P.W., Cotton, C.V., Mandel, M.I.: Cross-correlation of beat-synchronous representations for music similarity. In: Proceedings of the IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), Las Vegas, USA, pp. 57–60 (2008), http://mr-pc.org/work/icassp08.pdf (last viewed February 2011)
  14. 14.
    Fujishima, T.: Realtime chord recognition of musical sound: a system using common lisp music. In: Proc. International Computer Music Association, ICMC 1999, pp. 464–467 (1999), http://ci.nii.ac.jp/naid/10013545881/en/ (last viewed, February 2011)
  15. 15.
    Goertzel, G.: An algorithm for the evaluation of finite trigonomentric series. The American Mathematical Monthly 65(1), 34–35 (1958)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Gómez, E., Herrera, P.: Estimating the tonality of polyphonic audio files: Cognitive versus machine learning modelling strategies. In: Proc. Music Information Retrieval Conference (ISMIR 2004), Barcelona, Spain, pp. 92–95 (2004)Google Scholar
  17. 17.
    Gonzalez, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall Inc., Upper Saddle River (2006)Google Scholar
  18. 18.
    Goto, M.: Development of the RWC music database. In: 18th Int. Congress on Acoustics., pp. I-553–I-556 (2004)Google Scholar
  19. 19.
    Goto, M.: Development of the RWC music database. In: Proc. of the 18th International Congress on Acoustics ICA 2004, Kyoto, Japan, pp. 553–556 (April 2004)Google Scholar
  20. 20.
    Gouyon, F.: A computational approach to rhythm description — Audio features for the computation of rhythm periodicity functions and their use in tempo induction and music content processing. Ph.D. thesis, Ph.D. Dissertation. UPF (2005), http://www.mtg.upf.edu/files/publications/9d0455-PhD-Gouyon.pdf (last viewed February 2011)
  21. 21.
    Holzapfel, A., Stylianou, Y.: Rhythmic similarity of music based on dynamic periodicity warping. In: IEEE International Conference on Acoustics, Speech and Signal Processing, ICASSP 2008, Las Vegas, USA, March 31- April 4, pp. 2217–2220 (2008)Google Scholar
  22. 22.
    Izmirli, Ö.: Audio key finding using low-dimensional spaces. In: Proc. Music Information Retrieval Conference, ISMIR 2006, Victoria, Canada, pp. 127–132 (2006)Google Scholar
  23. 23.
    Klapuri, A.: Automatic music transcription as we know it today. Journal of New Music Research 33(3), 269–282 (2004)CrossRefGoogle Scholar
  24. 24.
    Krumhansl, C.L., Kessler, E.J.: Tracing the dynamic changes in perceived tonal organization in a spatial representation of musical keys. Psychological Review 89, 334–368 (1982)CrossRefGoogle Scholar
  25. 25.
    Lampropoulos, A.S., Sotiropoulos, D.N., Tsihrintzis, G.A.: Individualization of music similarity perception via feature subset selection. In: Proc. Int. Conference on Systems, Man and Cybernetics, Massachusetts, USA, vol. 1, pp. 552–556 (2004)Google Scholar
  26. 26.
    Logan, B., Salomon, A.: A music similarity function based on signal analysis. In: IEEE International Conference on Multimedia and Expo., ICME 2001,Tokyo, Japan, pp. 745–748 (August 2001)Google Scholar
  27. 27.
    Logan, B.: Mel frequency cepstral coefficients for music modeling. In: Proc. Music Information Retrieval Conference(ISMIR 2000) (2000)Google Scholar
  28. 28.
    Marolt, M.: A connectionist approach to automatic transcription of polyphonic piano music. IEEE Transactions on Multimedia 6(3), 439–449 (2004)CrossRefGoogle Scholar
  29. 29.
    Ockelford, A.: On Similarity, Derivation and the Cognition of Musical Structure. Psychology of Music 32(1), 23–74 (2004), http://pom.sagepub.com/cgi/content/abstract/32/1/23 (last viewed February 2011)CrossRefGoogle Scholar
  30. 30.
    Oppenheim, A., Schafer, R.: Discrete-Time Signal Processing. Prentice-Hall, Englewood Cliffs (1989)zbMATHGoogle Scholar
  31. 31.
    Pampalk, E.: Islands of music - analysis, organization, and visualization of music archives. Vienna University of Technology, Tech. rep. (2001)Google Scholar
  32. 32.
    Philips: The I2C bus specification v.2.1. (2000), http://www.nxp.com (last viewed February 2011)
  33. 33.
    Prasad, B., Mahadeva, S.: Speech, Audio, Image and Biomedical Signal Processing using Neural Networks. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  34. 34.
    Tardón, L.J., Sammartino, S., Barbancho, I., Gómez, V., Oliver, A.J.: Optical music recognition for scores written in white mensural notation. EURASIP Journal on Image and Video Processing 2009, Article ID 843401, 23 pages (2009), doi:10.1155/2009/843401Google Scholar
  35. 35.
    Temperley, D.: The Cognition of Basic Musical Structures. The MIT Press, Cambridge (2004)Google Scholar
  36. 36.
    William, W.K.P.: Digital image processing, 2nd edn. John Wiley & Sons Inc., New York (1991)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Isabel Barbancho
    • 1
  • Lorenzo J. Tardón
    • 1
  • Ana M. Barbancho
    • 1
  • Andrés Ortiz
    • 1
  • Simone Sammartino
    • 1
  • Cristina de la Bandera
    • 1
  1. 1.Grupo de Aplicación de las Tecnologías de la Información y Comunicaciones, Departamento de Ingeniería de Comunicaciones, E.T.S. Ingeniería de TelecomunicaciónUniversidad of MálagaSpain

Personalised recommendations