Advertisement

An Entropy Based Method for Local Time-Adaptation of the Spectrogram

  • Marco Liuni
  • Axel Röbel
  • Marco Romito
  • Xavier Rodet
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6684)

Abstract

We propose a method for automatic local time-adaptation of the spectrogram of audio signals: it is based on the decomposition of a signal within a Gabor multi-frame through the STFT operator. The sparsity of the analysis in every individual frame of the multi-frame is evaluated through the Rényi entropy measures: the best local resolution is determined minimizing the entropy values. The overall spectrogram of the signal we obtain thus provides local optimal resolution adaptively evolving over time. We give examples of the performance of our algorithm with an instrumental sound and a synthetic one, showing the improvement in spectrogram displaying obtained with an automatic adaptation of the resolution. The analysis operator is invertible, thus leading to a perfect reconstruction of the original signal through the analysis coefficients.

Keywords

adaptive spectrogram sound representation sound analysis sound synthesis Rényi entropy sparsity measures frame theory 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Baraniuk, R.G., Flandrin, P., Janssen, A.J.E.M., Michel, O.J.J.: Measuring Time-Frequency Information Content Using the Rényi Entropies. IEEE Trans. Info. Theory 47(4) (2001)Google Scholar
  2. 2.
    Borichev, A., Gröchenig, K., Lyubarskii, Y.: Frame constants of gabor frames near the critical density. J. Math. Pures Appl. 94(2) (2010)Google Scholar
  3. 3.
    Christensen, O.: An Introduction To Frames And Riesz Bases. Birkhäuser, Boston (2003)CrossRefzbMATHGoogle Scholar
  4. 4.
    Cohen, L.: Time-Frequency Distributions-A Review. Proceedings of the IEEE 77(7) (1989)Google Scholar
  5. 5.
    Cohen, L.: Time-Frequency Analysis. Prentice-Hall, Upper Saddle River (1995)Google Scholar
  6. 6.
    Daubechies, I., Grossmann, A., Meyer, Y.: Painless nonorthogonal expansions. J. Math. Phys. 27 (1986)Google Scholar
  7. 7.
    Daubechies, I.: The Wavelet Transform, Time-Frequency Localization and Signal Analysis. IEEE Trans. Info. Theory 36(5) (1990)Google Scholar
  8. 8.
    Dörfler, M.: Gabor Analysis for a Class of Signals called Music. PhD thesis, NuHAG, University of Vienna (2002)Google Scholar
  9. 9.
    Dörfler, M.: Quilted Gabor frames - a new concept for adaptive time-frequency representation. eprint arXiv:0912.2363 (2010)Google Scholar
  10. 10.
    Flandrin, P.: Time-Frequency/ Time-Scale Analysis. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  11. 11.
    Griffin, D.W., Lim, J.S.: Signal Estimation from Modified Short-Time Fourier Transform. IEEE Trans. Acoust. Speech Signal Process. 32(2) (1984)Google Scholar
  12. 12.
    Gröchenig, K.: Foundations of Time-Frequency Analysis. Birkhäuser, Boston (2001)CrossRefzbMATHGoogle Scholar
  13. 13.
    Jaillet, F.: Représentation et traitement temps-fréquence des signaux audionumériques pour des applications de design sonore. PhD thesis, Université de la Méditerranée - Aix-Marseille II (2005)Google Scholar
  14. 14.
    Jaillet, F., Balazs, P., Dörfler, M.: Nonstationary Gabor Frames. INRIA a CCSD electronic archive server based on P.A.O.L (2009), http://hal.inria.fr/oai/oai.php
  15. 15.
    Lukin, A., Todd, J.: Adaptive Time-Frequency Resolution for Analysis and Processing of Audio. Audio Engineering Society Convention Paper (2006)Google Scholar
  16. 16.
    Mallat, S.: A wavelet tour on signal processing. Academic Press, San Diego (1999)zbMATHGoogle Scholar
  17. 17.
    Rényi, A.: On Measures of Entropy and Information. In: Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., Berkeley, California, pp. 547–561 (1961)Google Scholar
  18. 18.
    Rudoy, D., Prabahan, B., Wolfe, P.: Superposition frames for adaptive time-frequency analysis and fast reconstruction. IEEE Trans. Sig. Proc. 58(5) (2010)Google Scholar
  19. 19.
    Schlögl, F., Beck, C. (eds.): Thermodynamics of chaotic systems. Cambridge University Press, Cambridge (1993)zbMATHGoogle Scholar
  20. 20.
    Sun, W.: Asymptotic properties of Gabor frame operators as sampling density tends to infinity. J. Funct. Anal. 258(3) (2010)Google Scholar
  21. 21.
    Wolfe, P.J., Godsill, S.J., Dörfler, M.: Multi-Gabor Dictionaries for Audio Time-Frequency Analysis. In: Proc. IEEE WASPAA (2001)Google Scholar
  22. 22.
    Zibulski, M., Zeevi, Y.Y.: Analysis of multiwindow Gabor-type schemes by frame methods. Appl. Comput. Harmon. Anal. 4(2) (1997)Google Scholar
  23. 23.
    Zyczkowski, K.: Rényi Extrapolation of Shannon Entropy. Open Systems & Information Dynamics 10(3) (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Marco Liuni
    • 1
    • 2
  • Axel Röbel
    • 2
  • Marco Romito
    • 1
  • Xavier Rodet
    • 2
  1. 1.Dip. di Matematica ”U. Dini”Universitá di FirenzeFlorenceItaly
  2. 2.IRCAM - CNRS STMSAnalysis/Synthesis Team 1ParisFrance

Personalised recommendations