Pitch Gestures in Generative Modeling of Music

  • Kristoffer Jensen
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6684)


Generative models of music are in need of performance and gesture additions, i.e. inclusions of subtle temporal and dynamic alterations, and gestures so as to render the music musical. While much of the research regarding music generation is based on music theory, the work presented here is based on the temporal perception, which is divided into three parts, the immediate (subchunk), the short-term memory (chunk), and the superchunk. By review of the relevant temporal perception literature, the necessary performance elements to add in the metrical generative model, related to the chunk memory, are obtained. In particular, the pitch gestures are modeled as rising, falling, or as arches with positive or negative peaks.


gesture human cognition perception chunking music generation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Fraisse, P.: Rhythm and Tempo. In: Deutsch, D. (ed.) The Psychology of Music, 1st edn., pp. 149–180. Academic Press, New York (1982)CrossRefGoogle Scholar
  2. 2.
    Friberg, A.: Performance Rules for Computer-Controlled Contemporary Keyboard Music. Computer Music Journal 15(2), 49–55 (1991)CrossRefGoogle Scholar
  3. 3.
    Gordon, J.W.: The perceptual attack time of musical tones. Journal of the Acoustical Society of America, 88–105 (1987)Google Scholar
  4. 4.
    Handel, S.: Listening. MIT Press, Cambridge (1989)Google Scholar
  5. 5.
    Huron, D.: The Melodic Arch in Western Folk songs. Computing in Musicology 10, 3–23 (1996)Google Scholar
  6. 6.
    Jensen, K.: Timbre Models of Musical Sounds, PhD Dissertation, DIKU Report 99/7 (1999)Google Scholar
  7. 7.
    Jensen, K.: Investigation on Meter in Generative Modeling of Music. In: Proceedings of the CMMR, Malaga, June 21-24 (2010)Google Scholar
  8. 8.
    Jensen, K., Kühl, O.: Towards a model of musical chunks. In: Ystad, S., Kronland-Martinet, R., Jensen, K. (eds.) CMMR 2008. LNCS, vol. 5493, pp. 81–92. Springer, Heidelberg (2009)CrossRefGoogle Scholar
  9. 9.
    Kühl, O., Jensen, K.: Retrieving and recreating musical form. In: Kronland-Martinet, R., Ystad, S., Jensen, K. (eds.) CMMR 2007. LNCS, vol. 4969, pp. 270–282. Springer, Heidelberg (2008)Google Scholar
  10. 10.
    Kühl, O.: Musical Semantics. Peter Lang, Bern (2007)CrossRefGoogle Scholar
  11. 11.
    Lerdahl, F., Jackendoff, R.: A Generative Theory of Tonal Music. The MIT Press, Cambridge (1983)Google Scholar
  12. 12.
    Malbrán, S.: Phases in Children’s Rhythmic Development. In: Zatorre, R., Peretz, I. (eds.) The Biological Foundations of Music. Annals of the New York Academy of Sciences (2000)Google Scholar
  13. 13.
    Papadopoulos, G., Wiggins, G.: AI methods for algorithmic composition: a survey, a critical view and future prospects. In: AISB Symposium on Musical Creativity, pp. 110–117 (1999)Google Scholar
  14. 14.
    Patel, A., Peretz, I.: Is music autonomous from language? A neuropsychological appraisal. In: Deliège, I., Sloboda, J. (eds.) Perception and cognition of music, pp. 191–215. Psychology Press, Hove (1997)Google Scholar
  15. 15.
    Samson, S., Ehrlé, N., Baulac, M.: Cerebral Substrates for Musical Temporal Processes. In: Zatorre, R., Peretz, I. (eds.) The Biological Foundations of Music. Annals of the New York Academy of Sciences (2000)Google Scholar
  16. 16.
    Snyder, B.: Music and Memory. An Introduction. The MIT Press, Cambridge (2000)Google Scholar
  17. 17.
    The Digital Tradition (2010), (visited December 1, 2010)
  18. 18.
    Thomassen, J.M.: Melodic accent: Experiments and a tentative model. J. Acoust. Soc. Am. 71(6), 1596–1605 (1982)CrossRefGoogle Scholar
  19. 19.
    Vos, P.G., Troost, J.M.: Ascending and Descending Melodic Intervals: Statistical Findings and Their Perceptual Relevance. Music Perception 6(4), 383–396 (1089)Google Scholar
  20. 20.
    Widmer, G.: Machine discoveries: A few simple, robust local expression principles. Journal of New Music Research 31, 37–50 (2002)CrossRefGoogle Scholar
  21. 21.
    Zwicker, E., Fastl, H.: Psychoacoustics: facts and models, 2nd edn. Springer series in information sciences. Springer, Berlin (1999)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kristoffer Jensen
    • 1
  1. 1.Aalborg University EsbjergEsbjergDenmark

Personalised recommendations