Melodic Similarity through Shape Similarity

  • Julián Urbano
  • Juan Lloréns
  • Jorge Morato
  • Sonia Sánchez-Cuadrado
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6684)


We present a new geometric model to compute the melodic similarity of symbolic musical pieces. Melodies are represented as splines in the pitch-time plane, and their similarity is computed as the similarity of their shape. The model is very intuitive and it is transposition and time scale invariant. We have implemented it with a local alignment algorithm over sequences of n-grams that define spline spans. An evaluation with the MIREX 2005 collections shows that the model performs very well, obtaining the best effectiveness scores ever reported for these collections. Three systems based on this new model were evaluated in MIREX 2010, and the three systems obtained the best results.


Music information retrieval melodic similarity interpolation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Aloupis, G., Fevens, T., Langerman, S., Matsui, T., Mesa, A., Nuñez, Y., Rappaport, D., Toussaint, G.: Algorithms for Computing Geometric Measures of Melodic Similarity. Computer Music Journal 30(3), 67–76 (2006)CrossRefGoogle Scholar
  2. 2.
    Bainbridge, D., Dewsnip, M., Witten, I.H.: Searching Digital Music Libraries. Information Processing and Management 41(1), 41–56 (2005)CrossRefzbMATHGoogle Scholar
  3. 3.
    de Boor, C.: A Practical guide to Splines. Springer, Heidelberg (2001)zbMATHGoogle Scholar
  4. 4.
    Bozkaya, T., Ozsoyoglu, M.: Indexing Large Metric Spaces for Similarity Search Queries. ACM Transactions on Database Systems 24(3), 361–404 (1999)CrossRefGoogle Scholar
  5. 5.
    Byrd, D., Crawford, T.: Problems of Music Information Retrieval in the Real World. Information Processing and Management 38(2), 249–272 (2002)CrossRefzbMATHGoogle Scholar
  6. 6.
    Casey, M.A., Veltkamp, R.C., Goto, M., Leman, M., Rhodes, C., Slaney, M.: Content-Based Music Information Retrieval: Current Directions and Future Challenges. Proceedings of the IEEE 96(4), 668–695 (2008)CrossRefGoogle Scholar
  7. 7.
    Clifford, R., Christodoulakis, M., Crawford, T., Meredith, D., Wiggins, G.: A Fast, Randomised, Maximal Subset Matching Algorithm for Document-Level Music Retrieval. In: International Conference on Music Information Retrieval, pp. 150–155 (2006)Google Scholar
  8. 8.
    Doraisamy, S., Rüger, S.: Robust Polyphonic Music Retrieval with N-grams. Journal of Intelligent Systems 21(1), 53–70 (2003)Google Scholar
  9. 9.
    Downie, J.S.: The Scientific Evaluation of Music Information Retrieval Systems: Foundations and Future. Computer Music Journal 28(2), 12–23 (2004)CrossRefGoogle Scholar
  10. 10.
    Downie, J.S., West, K., Ehmann, A.F., Vincent, E.: The 2005 Music Information Retrieval Evaluation Exchange (MIREX 2005): Preliminary Overview. In: International Conference on Music Information Retrieval, pp. 320–323 (2005)Google Scholar
  11. 11.
    Hanna, P., Ferraro, P., Robine, M.: On Optimizing the Editing Algorithms for Evaluating Similarity Between Monophonic Musical Sequences. Journal of New Music Research 36(4), 267–279 (2007)CrossRefGoogle Scholar
  12. 12.
    Hanna, P., Robine, M., Ferraro, P., Allali, J.: Improvements of Alignment Algorithms for Polyphonic Music Retrieval. In: International Symposium on Computer Music Modeling and Retrieval, pp. 244–251 (2008)Google Scholar
  13. 13.
    Isaacson, E.U.: Music IR for Music Theory. In: The MIR/MDL Evaluation Project White paper Collection, 2nd edn., pp. 23–26 (2002)Google Scholar
  14. 14.
    Kilian, J., Hoos, H.H.: Voice Separation — A Local Optimisation Approach. In: International Symposium on Music Information Retrieval, pp. 39–46 (2002)Google Scholar
  15. 15.
    Lin, H.-J., Wu, H.-H.: Efficient Geometric Measure of Music Similarity. Information Processing Letters 109(2), 116–120 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    McAdams, S., Bregman, A.S.: Hearing Musical Streams. In: Roads, C., Strawn, J. (eds.) Foundations of Computer Music, pp. 658–598. The MIT Press, Cambridge (1985)Google Scholar
  17. 17.
    Mongeau, M., Sankoff, D.: Comparison of Musical Sequences. Computers and the Humanities 24(3), 161–175 (1990)CrossRefGoogle Scholar
  18. 18.
    Selfridge-Field, E.: Conceptual and Representational Issues in Melodic Comparison. Computing in Musicology 11, 3–64 (1998)Google Scholar
  19. 19.
    Smith, L.A., McNab, R.J., Witten, I.H.: Sequence-Based Melodic Comparison: A Dynamic Programming Approach. Computing in Musicology 11, 101–117 (1998)Google Scholar
  20. 20.
    Smith, T.F., Waterman, M.S.: Identification of Common Molecular Subsequences. Journal of Molecular Biology 147(1), 195–197 (1981)CrossRefGoogle Scholar
  21. 21.
    Typke, R., den Hoed, M., de Nooijer, J., Wiering, F., Veltkamp, R.C.: A Ground Truth for Half a Million Musical Incipits. Journal of Digital Information Management 3(1), 34–39 (2005)Google Scholar
  22. 22.
    Typke, R., Veltkamp, R.C., Wiering, F.: A Measure for Evaluating Retrieval Techniques based on Partially Ordered Ground Truth Lists. In: IEEE International Conference on Multimedia and Expo., pp. 1793–1796 (2006)Google Scholar
  23. 23.
    Typke, R., Veltkamp, R.C., Wiering, F.: Searching Notated Polyphonic Music Using Transportation Distances. In: ACM International Conference on Multimedia, pp. 128–135 (2004)Google Scholar
  24. 24.
    Typke, R., Wiering, F., Veltkamp, R.C.: A Survey of Music Information Retrieval Systems. In: International Conference on Music Information Retrieval, pp. 153–160 (2005)Google Scholar
  25. 25.
    Uitdenbogerd, A., Zobel, J.: Melodic Matching Techniques for Large Music Databases. In: ACM International Conference on Multimedia, pp. 57–66 (1999)Google Scholar
  26. 26.
    Ukkonen, E., Lemström, K., Mäkinen, V.: Geometric Algorithms for Transposition Invariant Content-Based Music Retrieval. In: International Conference on Music Information Retrieval, pp. 193–199 (2003)Google Scholar
  27. 27.
    Urbano, J., Lloréns, J., Morato, J., Sánchez-Cuadrado, S.: MIREX 2010 Symbolic Melodic Similarity: Local Alignment with Geometric Representations. Music Information Retrieval Evaluation eXchange (2010)Google Scholar
  28. 28.
    Urbano, J., Marrero, M., Martín, D., Lloréns, J.: Improving the Generation of Ground Truths based on Partially Ordered Lists. In: International Society for Music Information Retrieval Conference, pp. 285–290 (2010)Google Scholar
  29. 29.
    Urbano, J., Morato, J., Marrero, M., Martín, D.: Crowdsourcing Preference Judgments for Evaluation of Music Similarity Tasks. In: ACM SIGIR Workshop on Crowdsourcing for Search Evaluation, pp. 9–16 (2010)Google Scholar
  30. 30.
    Ó Maidín, D.: A Geometrical Algorithm for Melodic Difference. Computing in Musicology 11, 65–72 (1998)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Julián Urbano
    • 1
  • Juan Lloréns
    • 1
  • Jorge Morato
    • 1
  • Sonia Sánchez-Cuadrado
    • 1
  1. 1.Department of Computer ScienceUniversity Carlos III of MadridLeganésSpain

Personalised recommendations