Advertisement

Identifying Attack Articulations in Classical Guitar

  • Tan Hakan Özaslan
  • Enric Guaus
  • Eric Palacios
  • Josep Lluis Arcos
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6684)

Abstract

The study of musical expressivity is an active field in sound and music computing. The research interest comes from different motivations: to understand or model music expressivity; to identify the expressive resources that characterize an instrument, musical genre, or performer; or to build synthesis systems able to play expressively. Our research is focused on the study of classical guitar and deals with modeling the use of the expressive resources in the guitar. In this paper, we present a system that combines several state of the art analysis algorithms to identify guitar left hand articulations such as legatos and glissandos. After describing the components of our system, we report some experiments with recordings containing single articulations and short melodies performed by a professional guitarist.

Keywords

Fundamental Frequency Release Part Extraction Module Expressive Articulation Envelope Approximation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arcos, J.L., López de Mántaras, R., Serra, X.: Saxex: a case-based reasoning system for generating expressive musical performances. Journal of New Music Research 27(3), 194–210 (1998)CrossRefGoogle Scholar
  2. 2.
    Brossier, P.: Automatic annotation of musical audio for interactive systems. Ph.D. thesis, Centre for Digital music, Queen Mary University of London (2006)Google Scholar
  3. 3.
    Brossier, P., Bello, J.P., Plumbley, M.D.: Real-time temporal segmentation of note objects in music signals. In: Proceedings of the International Computer Music Conference, ICMC 2004 (November 2004)Google Scholar
  4. 4.
    Burns, A., Wanderley, M.: Visual methods for the retrieval of guitarist fingering. In: NIME 2006: Proceedings of the 2006 conference on New interfaces for musical expression, Paris, pp. 196–199 (June 2006)Google Scholar
  5. 5.
    Carlevaro, A.: Serie didactica para guitarra. vol. 4. Barry Editorial (1974)Google Scholar
  6. 6.
    de Cheveigné, A., Kawahara, H.: Yin, a fundamental frequency estimator for speech and music. The Journal of the Acoustical Society of America 111(4), 1917–1930 (2002)CrossRefGoogle Scholar
  7. 7.
    Dodge, C., Jerse, T.A.: Computer Music: Synthesis, Composition, and Performance. Macmillan Library Reference (1985)Google Scholar
  8. 8.
    Duxbury, C., Bello, J., Davies, J., Sandler, M., Mark, M.: Complex domain onset detection for musical signals. In: Proceedings Digital Audio Effects Workshop (2003)Google Scholar
  9. 9.
    Erkut, C., Valimaki, V., Karjalainen, M., Laurson, M.: Extraction of physical and expressive parameters for model-based sound synthesis of the classical guitar. In: 108th AES Convention, pp. 19–22 (February 2000)Google Scholar
  10. 10.
    Gabrielsson, A.: Once again: The theme from Mozart’s piano sonata in A major (K. 331). A comparison of five performances. In: Gabrielsson, A. (ed.) Action and perception in rhythm and music, pp. 81–103. Royal Swedish Academy of Music, Stockholm (1987)Google Scholar
  11. 11.
    Gabrielsson, A.: Expressive intention and performance. In: Steinberg, R. (ed.) Music and the Mind Machine, pp. 35–47. Springer, Berlin (1995)CrossRefGoogle Scholar
  12. 12.
    Gouyon, F., Herrera, P., Gómez, E., Cano, P., Bonada, J., Loscos, A., Amatriain, X., Serra, X.: In: ontent Processing of Music Audio Signals, pp. 83–160. Logos Verlag, Berlin (2008), http://smcnetwork.org/public/S2S2BOOK1.pdf Google Scholar
  13. 13.
    Grachten, M., Arcos, J., de Mántaras, R.L.: A case based approach to expressivity-aware tempo transformation. Machine Learning 65(2-3), 411–437 (2006)CrossRefGoogle Scholar
  14. 14.
    Heijink, H., Meulenbroek, R.G.J.: On the complexity of classical guitar playing:functional adaptations to task constraints. Journal of Motor Behavior 34(4), 339–351 (2002)CrossRefGoogle Scholar
  15. 15.
    Johnstone, J.A.: Phrasing in piano playing. Withmark New York (1913)Google Scholar
  16. 16.
    Juslin, P.: Communicating emotion in music performance: a review and a theoretical framework. In: Juslin, P., Sloboda, J. (eds.) Music and emotion: theory and research, pp. 309–337. Oxford University Press, New York (2001)Google Scholar
  17. 17.
    Lee, N., Zhiyao, D., Smith, J.O.: Excitation signal extraction for guitar tones. In: International Computer Music Conference, ICMC 2007 (2007)Google Scholar
  18. 18.
    Lin, J., Keogh, E., Wei, L., Lonardi, S.: Experiencing sax: a novel symbolic representation of time series. Data Mining and Knowledge Discovery 15(2), 107–144 (2007)MathSciNetCrossRefGoogle Scholar
  19. 19.
    Lindström, E.: 5 x oh, my darling clementine the influence of expressive intention on music performance (1992) Department of Psychology, Uppsala UniversityGoogle Scholar
  20. 20.
    de Mantaras, R.L., Arcos, J.L.: Ai and music from composition to expressive performance. AI Mag. 23(3), 43–57 (2002)Google Scholar
  21. 21.
    Masri, P.: Computer modeling of Sound for Transformation and Synthesis of Musical Signal. Ph.D. thesis, University of Bristol (1996)Google Scholar
  22. 22.
    Norton, J.: Motion capture to build a foundation for a computer-controlled instrument by study of classical guitar performance. Ph.D. thesis, Stanford University (September 2008)Google Scholar
  23. 23.
    Palmer, C.: Anatomy of a performance: Sources of musical expression. Music Perception 13(3), 433–453 (1996)CrossRefGoogle Scholar
  24. 24.
    Radicioni, D.P., Lombardo, V.: A constraint-based approach for annotating music scores with gestural information. Constraints 12(4), 405–428 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Radisavljevic, A., Driessen, P.: Path difference learning for guitar fingering problem. In: International Computer Music Conference (ICMC 2004) (2004)Google Scholar
  26. 26.
    Sloboda, J.A.: The communication of musical metre in piano performance. Quarterly Journal of Experimental Psychology 35A, 377–396 (1983)CrossRefGoogle Scholar
  27. 27.
    Trajano, E., Dahia, M., Santana, H., Ramalho, G.: Automatic discovery of right hand fingering in guitar accompaniment. In: Proceedings of the International Computer Music Conference (ICMC 2004), pp. 722–725 (2004)Google Scholar
  28. 28.
    Traube, C., Depalle, P.: Extraction of the excitation point location on a string using weighted least-square estimation of a comb filter delay. In: Procs. of the 6th International Conference on Digital Audio Effects, DAFx 2003 (2003)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Tan Hakan Özaslan
    • 1
  • Enric Guaus
    • 1
  • Eric Palacios
    • 1
  • Josep Lluis Arcos
    • 1
  1. 1.IIIA, Artificial Intelligence Research Institute, CSICSpanish National Research CouncilBellaterraSpain

Personalised recommendations