Skip to main content

Pose-Consistent 3D Shape Segmentation Based on a Quantum Mechanical Feature Descriptor

  • Conference paper
Pattern Recognition (DAGM 2011)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6835))

Included in the following conference series:

Abstract

We propose a novel method for pose-consistent segmentation of non-rigid 3D shapes into visually meaningful parts. The key idea is to study the shape in the framework of quantum mechanics and to group points on the surface which have similar probability of presence for quantum mechanical particles. For each point on an object’s surface these probabilities are encoded by a feature vector, the Wave Kernel Signature (WKS). Mathematically, the WKS is an expression in the eigenfunctions of the Laplace–Beltrami operator of the surface. It characterizes the relation of surface points to the remaining surface at various spatial scales. Gaussian mixture clustering in the feature space spanned by the WKS signature for shapes in several poses leads to a grouping of surface points into different and meaningful segments. This enables us to perform consistent and robust segmentation of new versions of the shape.

Experimental results demonstrate that the detected subdivision agrees with the human notion of shape decomposition (separating hands, arms, legs and head from the torso for example). We show that the method is robust to data perturbed by various kinds of noise. Finally we illustrate the usefulness of a pose-consistent segmentation for the purpose of shape retrieval.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Agathos, A., Pratikakis, I., Perantonis, S., Sapidis, N., Azariadis, P.: 3D mesh segmentation methodologies for CAD applications. Computer-Aided Design and Applications 4(6), 827–841 (2007)

    Google Scholar 

  2. Anguelov, D., Koller, D., Pang, H.C., Srinivasan, P., Thrun, S.: Recovering articulated object models from 3d range data. In: UAI, pp. 18–26 (2004)

    Google Scholar 

  3. Attene, M., Katz, S., Mortara, M., Patané, G., Spagnuolo, M., Tal, A.: Mesh segmentation-a comparative study. In: Shape Modelling International (SMI). IEEE Computer Society, Los Alamitos (2006)

    Google Scholar 

  4. Aubry, M., Schlickewei, U., Cremers, D.: The Wave Kernel Signature - A Quantum Mechanical Approach to Shape Analyis. Tech. rep., TU München, Germany (June 2011)

    Google Scholar 

  5. Bronstein, A., Bronstein, M., Bustos, B., Castellani, U., Crisani, M., Falcidieno, B., Guibas, L., Kokkinos, I., Murino, V., Ovsjanikov, M., et al.: SHREC 2010: robust feature detection and description benchmark. In: Proc. 3DOR (2010)

    Google Scholar 

  6. Goldluecke, B., Cremers, D.: Superresolution texture maps for multiview reconstruction. In: IEEE International Conference on Computer Vision (ICCV), Kyoto, Japan (2009)

    Google Scholar 

  7. Hoffman, D.: Visual intelligence: How we create what we see. WW Norton and Company, New York (2000)

    Google Scholar 

  8. James, D., Twigg, C.: Skinning mesh animations. ACM Transactions on Graphics (SIGGRAPH 2005) 24(3) (August 2005)

    Google Scholar 

  9. Lévy, B.: Laplace-Beltrami Eigenfunctions Towards an Algorithm That ”Understands” Geometry. In: Proc. Int. Conf. on Shape Modeling and Applications, p. 13. IEEE, Los Alamitos (2006)

    Google Scholar 

  10. Lévy, B., Petitjean, S., Ray, N., Maillot, J.: Least squares conformal maps for automatic texture atlas generation. ACM Transactions on Graphics 21(3), 362–371 (2002)

    Article  Google Scholar 

  11. Lian, Z., Godil, A., Fabry, T., Furuya, T., Hermans, J., Ohbuchi, R., Shu, C., Smeets, D., Suetens, P., Vandermeulen, D., et al.: SHREC 2010 Track: Non-rigid 3D Shape Retrieval. In: Eurographics 3DOR (2010)

    Google Scholar 

  12. Ovsjanikov, M., Bronstein, A., Bronstein, M., Guibas, L.: Shape Google: a computer vision approach to invariant shape retrieval. In: Proc. NORDIA, vol. 1(2) (2009)

    Google Scholar 

  13. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Experimental Mathematics 2(1), 15–36 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Reuter, M.: Hierarchical shape segmentation and registration via topological features of laplace-beltrami eigenfunctions. International Journal of Computer Vision

    Google Scholar 

  15. Rustamov, R.: Laplace-Beltrami eigenfunctions for deformation invariant shape representation. In: SGP, pp. 225–233. Eurographics (2007)

    Google Scholar 

  16. Schaefer, S., Yuksel, C.: Example-based skeleton extraction. In: Symposium on Geometry Processing, pp. 153–162 (2007)

    Google Scholar 

  17. Shamir, A.: A survey on mesh segmentation techniques. Computer Graphics Forum 27, 1539–1556 (2008)

    Article  MATH  Google Scholar 

  18. Shapira, L., Shalom, S., Shamir, A., Cohen-Or, D., Zhang, H.: Contextual part analogies in 3d objects. International Journal of Computer Vision 89(2-3), 309–326 (2010)

    Article  Google Scholar 

  19. Sharma, A., von Lavante, E., Horaud, R.: Learning shape segmentation using constrained spectral clustering and probabilistic label transfer. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6315, pp. 743–756. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Skraba, P., Ovsjanikov, M., Chazal, F., Guibas, L.: Persistence-based segmentation of deformable shapes. In: NORDIA, pp. 45–52. IEEE, Los Alamitos (2010)

    Google Scholar 

  21. Sumner, R., Popović, J.: Deformation transfer for triangle meshes. ACM Transactions on Graphics (TOG) 23(3), 399–405 (2004)

    Article  Google Scholar 

  22. Sun, J., Ovsjanikov, M., Guibas, L.: A Concise and Provably Informative Multi-Scale Signature Based on Heat Diffusion. Computer Graphics Forum 28(5), 1383–1392 (2009)

    Article  Google Scholar 

  23. Tal, A., Zuckerberger, E.: Mesh retrieval by components. In: GRAPP, pp. 142–149 (2006)

    Google Scholar 

  24. Toldo, R., Castellani, U., Fusiello, A.: Visual vocabulary signature for 3D object retrieval and partial matching. In: Proc. 3dOR, vol. 8, pp. 21–28 (2009)

    Google Scholar 

  25. Vlasic, D., Baran, I., Matusik, W., Popović, J.: Articulated mesh animation from multi-view silhouettes. In: ACM SIGGRAPH 2008 papers, pp. 1–9. ACM, New York (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Aubry, M., Schlickewei, U., Cremers, D. (2011). Pose-Consistent 3D Shape Segmentation Based on a Quantum Mechanical Feature Descriptor. In: Mester, R., Felsberg, M. (eds) Pattern Recognition. DAGM 2011. Lecture Notes in Computer Science, vol 6835. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23123-0_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23123-0_13

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23122-3

  • Online ISBN: 978-3-642-23123-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics