Skip to main content

Long Range Dependence, Stable Distributions and Self-Similarity

  • Chapter
  • First Online:
Fractional Order Signal Processing

Part of the book series: SpringerBriefs in Applied Sciences and Technology ((BRIEFSAPPLSCIENCES))

  • 1618 Accesses

Abstract

This chapter looks at Long Range Dependent models which are useful in modeling real world signals having outliers or long tailed statistical distributions. The concept of stable distribution is introduced and many standard distributions like symmetric \(\alpha\)stable, Gaussian, Cauchy, etc. are obtained from the generalized description of the family of stable distributions. Self-similarity for random processes is next introduced and the ideas of fractional Brownian motion, fractional and multi-fractional Gaussian noise, etc. are discussed in this context. The Hurst parameter which is a measure of self-similarity is discussed next and a few methods to estimate it are subsequently outlined.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adler, R.J., Feldman, R.E., Taqqu, M.S.: A Practical Guide to Heavy Tails: Statistical Techniques and Applications. Birkhauser, New York (1998)

    Google Scholar 

  • Burnecki, K., Weron, A.: Levy stable processes. From stationary to self-similar dynamics and back. An application to finance. Acta Physica Polonica Series B 35(4), 1343–1358 (2004)

    MathSciNet  MATH  Google Scholar 

  • Coimbra, C.F.M.: Mechanics with variable order differential operators. Annalen der Physik 12 (11–12), 692–703 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  • Doukhan, P., Oppenheim, G., Taqqu, M.S.: Theory and Applications of Long-Range Dependence. Birkhauser, New York (2003)

    Google Scholar 

  • Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Applications. Wiley, New York (2003)

    Google Scholar 

  • Grossglauser, M., Bolot, J-.C.: On the relevance of long-range dependence in network traffic. IEEE/ACM Trans. Netw. 7(5), 629–640 (1999). doi:10.1109/90.803379

    Article  Google Scholar 

  • Guglielmi, M.: 1/f[alpha] signal synthesis with precision control. Signal Process. 86(10), 2548–2553 (2006). doi:10.1016/j.sigpro.2006.02.012

    Article  MATH  Google Scholar 

  • Hosking, J.R.M: Fractional Differencing. Biometrika 68(1), 165–176 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  • Karmeshu, Krishnamachari, A.: Sequence variability and long-range dependence in DNA: an information theoretic perspective. In: Pal, N., Kasabov, N., Mudi, R., Pal, S., Parui, S. (eds.) Neural Information Processing. Lecture Notes in Computer Science, vol. 3316, pp. 1354–1361. Springer, Berlin / Heidelberg (2004)

    Google Scholar 

  • Kogon, S.M., Manolakis, D.G.: Signal modeling with self-similar \(\alpha\)-stable processes: the fractional Levy stable motion model. IEEE Trans. Signal Process. 44(4), 1006–1010 (1996)

    Google Scholar 

  • Koutsoyiannis, D.: The Hurst phenomenon and fractional Gaussian noise made easy/Le phénomène de Hurst et le bruit fractionnel gaussien rendus faciles dans leur utilisation. Hydrol. Sci. J. 47(4), 573–595 (2002)

    Article  Google Scholar 

  • Lorenzo, C.F., Hartley, T.T.: Variable order and distributed order fractional operators. Nonlinear Dyn. 29(1), 57–98 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  • Magin, R., Ortigueira, M.D., Podlubny, I., Trujillo, J.: On the fractional signals and systems. Signal Process. 91(3), 350–371 (2011). doi:10.1016/j.sigpro.2010.08.003

    Article  MATH  Google Scholar 

  • Mandelbrot, B.B.: A fast fractional Gaussian noise generator. Water Resour. Res. 7(3), 543–553 (1971)

    Article  Google Scholar 

  • Mandelbrot, B.B.: The fractal geometry of nature. Wh Freeman, New York (1983)

    Google Scholar 

  • Mandelbrot, B.B., VanNess, J.W.: Fractional Brownian motions, fractional noises and applications. SIAM Rev. 10(4), 422–437 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  • Manolakis, D.G., Ingle, V.K., Kogon, S.M., Ebrary, I.: Statistical and Adaptive Signal Processing: Spectral Estimation, Signal Modeling, Adaptive Filtering, and Array Processing. Artech House, London (2005)

    Google Scholar 

  • Montanari, A., Toth, E.: Calibration of hydrological models in the spectral domain: an opportunity for scarcely gauged basins. Water Resour. Res. 43(5), W05434 (2007)

    Article  Google Scholar 

  • Navarro, Jr., R., Tamangan, R., Guba-Natan, N., Ramos, E., Guzman, A.: The identification of long memory process in the Asean-4 stock markets by fractional and multifractional Brownian motion. Philipp. Stat. 55(1–2), 65–83 (2006)

    Google Scholar 

  • Nolan, J.: Stable Distributions: Models for Heavy-Tailed Data. Birkhauser, New York (2003)

    Google Scholar 

  • Peltier, R.F., Véhel, J.L.: Multifractional Brownian motion: definition and preliminary results. Rapport de Recherche-Institut National de Recherche En Informatique Et En automatique (1995)

    Google Scholar 

  • Peng, C.K., Mietus, J., Hausdorff, J., Havlin, S., Stanley, H.E., Goldberger, A.: Long-range anticorrelations and non-Gaussian behavior of the heartbeat. Phys. Rev. Lett. 70(9), 1343–1346 (1993)

    Article  Google Scholar 

  • Rao, B.L.S.P.: Statistical Inference for Fractional Diffusion Processes. Wiley, New York (2010)

    Google Scholar 

  • Samorodnitsky, G., Taqqu, M.S.: Stable Non-Gaussian Random Processes. Chapman & Hall, New York (1994)

    MATH  Google Scholar 

  • Sheng, H., Sun, H., Chen, Y., Qiu, T.: Synthesis of multifractional Gaussian noises based on variable-order fractional operators. Signal Process. 91(7), 1645–1650 (2011). doi:10.1016/j.sigpro.2011.01.010

    Article  Google Scholar 

  • Sun, H., Chen, Y., Chen, W.: Random-order fractional differential equation models. Signal Process. 91(3), 525–530 (2011). doi:10.1016/j.sigpro.2010.01.027

    Article  MathSciNet  MATH  Google Scholar 

  • Tseng, C-.C., Pei, S-.C., Hsia, S-.C.: Computation of fractional derivatives using Fourier transform and digital FIR differentiator. Signal Process. 80(1), 151–159 (2000). doi:10.1016/s0165-1684(99)00118-8

    Article  MATH  Google Scholar 

  • Varotsos, C., Kirk-Davidoff, D.: Long-memory processes in ozone and temperature variations at the region 60 S? 60 N. Atmos. Chem. Phys. 6(12), 4093–4100 (2006)

    Article  MATH  Google Scholar 

  • Wang, Y., Cavanaugh, J.E., Song, C.: Self-similarity index estimation via wavelets for locally self-similar processes. J. Stat. Plann. Inference 99(1), 91–110 (2001). doi:10.1016/s0378-3758(01)00075-1

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Saptarshi Das .

Rights and permissions

Reprints and permissions

Copyright information

© 2012 The Author(s)

About this chapter

Cite this chapter

Das, S., Pan, I. (2012). Long Range Dependence, Stable Distributions and Self-Similarity. In: Fractional Order Signal Processing. SpringerBriefs in Applied Sciences and Technology(). Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23117-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23117-9_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23116-2

  • Online ISBN: 978-3-642-23117-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics