Skip to main content

The Future of Eight Chip Technologies

  • Chapter
  • First Online:
Chips 2020

Part of the book series: The Frontiers Collection ((FRONTCOLL))

Abstract

We select eight silicon chip technologies that will play significant roles in the decade 2010–2020 for the development of high-performance, low-energy chips in 2020 and beyond. In the spirit of the 25-year rule, all of these technologies have been demonstrated, and some, in fact, are very mature and yet are worth revisiting at the nanometer scale.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Noyce, R.N.: Semiconductor device-and-lead structure. US Patent 2981877, filed 30 July 1959. Issued 25 Apr 1961

    Google Scholar 

  2. Pfeiffer, U.R., Ojefors, E., Zhao, Y.: A SiGe quadrature transmitter and receiver chipset for emerging high-frequency applications. IEEE ISSCC (International Solid-State Circuits Conference), Digest of Technical Papers, pp.416–417, (2010). doi: 10.1109/ISSCC.2010.5433832

  3. Gray, P.R., Hurst, P.J., Lewis, S.H., Meyer, R.G.: Analysis and Design of Analog Integrated Circuits. Wiley, New York (2001)

    Google Scholar 

  4. Atalla, M.M.: Stabilisation of silicon surfaces by thermally grown oxides. Bell Syst. Tech. J. 38, 749 (1959)

    Google Scholar 

  5. Kahng, D.: Electric field controlled semiconductor device. US Patent 3102230, filed 31 May 1960. Issued 27 Aug 1963

    Google Scholar 

  6. Liu, S., Hoefflinger, B., Pederson, D.O.: Interactive two-dimensional design of barrier-controlled MOS transistors. IEEE Trans. Electron Devices 27, 1550 (1980)

    Article  ADS  Google Scholar 

  7. Hoefflinger, B.: “New CMOS technologies” In: Carroll, J.E. (ed.) Solid-state devices 1980, Institute of Physics Conference Series, No. 57. pp. 85–139. Institute of Physics Publishing, Bristol (1981)

    Google Scholar 

  8. Grotjohn, T., Hoefflinger, B.: A parametric short-channel MOS transistor model for subthreshold and strong inversion current. IEEE J. Solid-State Circuits 19, 100 (1984)

    Article  Google Scholar 

  9. Wakabayashi, H., et al.: Characteristics and modeling of sub-10-nm planar bulk CMOS devices fabricated by lateral source/drain junction control. IEEE Trans. Electron Devices 53, 1961 (2006)

    Article  ADS  Google Scholar 

  10. Hoefflinger, B., Bigall, K.D., Zimmer, G., Krimmel, E.F.: Siemens Forschungs- und Entwicklungsberichte 1(4), 361 (1972)

    Google Scholar 

  11. Wanlass, F.M.: Low stand-by power complementary field effect circuitry. US Patent 3356858, filed 18 June 1963. Issued 5 Dec 1967

    Google Scholar 

  12. Wanlass, F.M., Sah, C.T.: Nanowatt logic using field-effect metal-oxide semiconductor triodes. IEEE ISSCC (International Solid-State Circuits Conference), Digest of Technical Papers, pp. 32–33. (1963)

    Google Scholar 

  13. Lin, H.C., Ho, J.C., Iyer, R., Kwong, K.: Complementary MOS–bipolar transistor structure. IEEE Trans. Electron Devices 16, 945 (1969)

    Article  Google Scholar 

  14. Strachan, A.J., Wagner, K.: Local oxidation of silicon/CMOS: Technology/design system for LSI in CMOS. IEEE ISSCC (International Solid-State Circuits Conference), Digest of Technical Papers, pp. 60–61. (1974). doi: 10.1109/ISSCC.1974.1155337

  15. Hoefflinger, B., Schneider, J., Zimmer, G.: Advanced compatible LSI process for N-MOS, CMOS and bipolar transistors. IEEE IEDM (International Electron Devices Meeting), Technical Digest, pp. 261A–F. (1977). doi: 10.1109/IEDM.1977.189225

  16. Plummer, J., Meindl, J.D., Maginness, M.G.: An ultrasonic imaging system for real-time cardiac imaging. IEEE ISSCC (International Solid-State Circuits Conference), Digest of Technical Papers, pp. 162–163. (1974). doi: 10.1109/ISSCC.1974.1155347

  17. Manasevit, H.M., Simpson, W.I.: Single-crystal silicon on a sapphire substrate. J. Appl. Phys. 35, 1349 (1964)

    Article  ADS  Google Scholar 

  18. Wallmark, J.T., Johnson, H. (eds.): Field-Effect Transistors. Prentice-Hall, Englewood Cliffs (1966)

    Google Scholar 

  19. Izumi, K., Doken, H., Arioshi, H.: CMOS devices fabricated on buried SiO2 layers formed by oxygen implantation into silicon. Electron Lett. 14, 593 (1978)

    Article  ADS  Google Scholar 

  20. Gibbons, J.F., Lee, K.F.: One-gate-wide CMOS inverter on laser-recrystallised polysilicon. IEEE Electron Device Lett. 1, 117 (1980)

    Article  Google Scholar 

  21. Imai, K.: A new dielectric isolation method using porous silicon. Solid-State Electron 24, 159 (1981)

    Article  ADS  Google Scholar 

  22. Ipri, A.C., Jastrzebski, L., Corboy, J.F.: Device characterisation on monocrystalline silicon grown over SiO2 by the ELO Process. IEEE IEDM (International Electron Devices Meeting), pp. 437–440 (1982)

    Google Scholar 

  23. Laskey, J.B., Stiffler, S.R., White, F.R., Abernathey, J.R.: Silicon on insulator (SOI) by bonding and etchback. IEEE IEDM (International Electron Devices Meeting), pp. 684 ff. (1985). doi: 10.1109/IEDM.1985.191067

  24. Yonehara, T., Sakaguchi, K., Sato, N.: Epitaxial layer transfer by bond and etch back of porous Si. Appl. Phys. Lett. 64, 2108 (1994)

    Article  ADS  Google Scholar 

  25. Bruel, M.: Silicon on insulator material technology. Electron Lett. 31, 1201 (1995)

    Article  Google Scholar 

  26. Colinge, J.P.: Silicon-on-insulator and porous silicon. In: Siffert, P., Krimmel, E. (eds.) Silicon: Evolution and Future of a Technology, p. 139. Springer, Berlin/Heidelberg (2004)

    Google Scholar 

  27. Hoefflinger, B.: Circuit considerations for future 3-dimensional integrated circuits. Proceedings of 2nd International Workshop on Future Electron Devices – SOI Technology and 3D Integration, Shujenzi, Japan, March 1985

    Google Scholar 

  28. Hoefflinger, B., Liu, S.T., Vajdic, B.: Three-dimensional CMOS design methodology. IEEE J. Solid-State Circuits 19, 37 (1984)

    Article  Google Scholar 

  29. Liu, M.S., Hoefflinger, B.: Three-dimensional CMOS using selective epitaxial growth. US Patent 4686758, filed 2 Jan 1986. Issued 18 Aug 1987

    Google Scholar 

  30. Zingg, R.P., Hoefflinger, B., Neudeck, G.: Stacked CMOS inverter with symmetric device performance. IEEE IEDM (International Electron Devices Meeting), Digest of Technical Papers, pp. 909–911 (1989)

    Google Scholar 

  31. Roos, G., Hoefflinger, B.: Complex 3D-CMOS circuits based on a triple-decker cell. IEEE J. Solid-State Circuits 27, 1067 (1992)

    Article  Google Scholar 

  32. Roos, G.: Ph.D. Dissertation: Zur drei-dimensionalen Integration von CMOS-Schaltungen, Fortschrittsberichte VDI, Reihe 9: Elektronik, Nr.168, (VDI, Düsseldorf, 1993)

    Google Scholar 

  33. Abou-Samra, S.J., Alsa, P.A., Guyot, P.A., Courtois, B.: 3D CMOS SOI for high performance computing. Proceedings of 1998 IEEE International Symposium Low-Power Electronics and Design (ISLPED). pp. 54–58 (1998)

    Google Scholar 

  34. Waser, R. (ed.): Nanoelectronics and Information Technology. Wiley-VCH, Weinheim (2003)

    Google Scholar 

  35. Risch, L.: Silicon nanoelectronics: the next 20 years. In: Siffert, P., Krimmel, E. (eds.) Silicon: Evolution and Future of a Technology. Springer, Berlin/Heidelberg (2004) (Chap. 18)

    Google Scholar 

  36. Wolf, E.L.: Quantum Nanoelectronics. Wiley-VCH, Weinheim (2009)

    Google Scholar 

  37. Eisele, I., Schulte, J., Kaspar, E.: Films by molecular-beam epitaxy. In: Siffert, P., Krimmel, E. (eds.) Silicon: Evolution and Future of a Technology. Springer, Berlin/Heidelberg (2004) (Chap. 6)

    Google Scholar 

  38. Hossain, R.: High Performance ASIC Design: Using Synthesizable Domino Logic in an ASIC Flow. Cambridge University Press, Cambridge (2008)

    Book  Google Scholar 

  39. Ruiz, G.A.: Evaluation of three 32-bit CMOS adders in DCVS logic for self-timed circuits. IEEE J. Solid-State Circuits 33, 604 (1998)

    Article  Google Scholar 

  40. Grube, R., Dudek, V., Hoefflinger, B., Schau, M.: 0.5 Volt CMOS logic delivering 25 Million 16 × 16 multiplications/s at 400 fJ on a 100 nm T-Gate SOI technology. Best-Paper Award. IEEE Computer Elements Workshop, Mesa, (2000)

    Google Scholar 

  41. Hoefflinger, B., Selzer, M., Warkowski, F.: Digital logarithmic CMOS multiplier for very-high-speed signal processing. IEEE Custom-Integrated Circuits Conference, Digest, pp. 16.7.1–5 (1991)

    Google Scholar 

  42. cordis.europa.eu > EUROPA > CORDIS > Archive: esprit ltr project 20023

    Google Scholar 

  43. Agarwal, A., Mathew, S.K., Hsu, S.K., Anders, M.A., Kaul, H., Sheikh, F., Ramanarayanan, R., Srinivasan, S., Krishnamurthy, R., Borkar, S.: A 320 mV-to-1.2 V on-die fine-grained reconfigurable fabric for DSP/media accelerators in 32 nm CMOS. IEEE ISSCC (International Solid-State Circuits Conference), Digest of Technical Papers, pp. 328–329 (2010)

    Google Scholar 

  44. Kurafuji, T., et al.: A scalable massively parallel processor for real-time image processing, IEEE ISSCC (International Solid-State Circuits Conference), Digest of Technical Papers, pp. 334–335 (2010)

    Google Scholar 

  45. Chen, T.-W., Chen, Y.-L., Cheng, T.-Y., Tang, C.-S., Tsung, P.-K., Chuang, T.-D., Chen, L.-G. Chien, S.-Y.: A multimedia semantic analysis SOC (SASoC) with machine-learning engine. IEEE ISSCC (International Solid-State Circuits Conference), Digest Technical Papers, pp. 3380150339 (2010)

    Google Scholar 

  46. Lee, S., Oh, J., Kim, M., Park, J., Kwon, J., Yoo, H.-J.: A 345 mW heterogeneous many-core processor with an intelligent inference engine for robust object recognition. IEEE ISSCC (International Solid-State Circuits Conference), pp. 332–333 (2010)

    Google Scholar 

  47. Graf, H.G.: Institute for Microelectronics Stuttgart, Germany

    Google Scholar 

  48. Si carrier, courtesy IBM Laboratories, Böblingen, Germany

    Google Scholar 

  49. Werkmann, H., Hoefflinger, B.: Smart substrate MCM testability optimisation by means of chip design. IEEE 6th International Conference on Multichip Modules, pp. 150–155. (1997)

    Google Scholar 

  50. Knickerbocker, J.U. (ed.): 3D chip technology, IBM J. Res. Dev. 52(6), November (2008)

    Google Scholar 

  51. Koester, S.J., et al.: Wafer-level 3D integration technology. IBM J. Res. Dev. 52, 583 (2008)

    Article  Google Scholar 

  52. Kang, U.: TSV technology and its application to DRAM. IEEE ISSCC (International Solid-State Circuits Conference), Forum 1: Silicon 3D Integration Technology and Systems (2010)

    Google Scholar 

  53. Zimmermann, M., et al.: Seamless ultra-thin chip fabrication and assembly process, IEEE IEDM (International Electron Devices Meeting), Digest of Technical Papers, pp. 1010–1012. (2006). doi: 10.1109/IEDM.2006.346787

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernd Hoefflinger .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hoefflinger, B. (2011). The Future of Eight Chip Technologies. In: Hoefflinger, B. (eds) Chips 2020. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23096-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23096-7_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22399-0

  • Online ISBN: 978-3-642-23096-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics