Skip to main content

Digital Neural Networks for New Media

  • Chapter
  • First Online:
Chips 2020

Part of the book series: The Frontiers Collection ((FRONTCOLL))

  • 4097 Accesses

Abstract

Neural Networks perform computationally intensive tasks offering smart solutions for many new media applications. A number of analog and mixed digital/analog implementations have been proposed to smooth the algorithmic gap. But gradually, the digital implementation has become feasible, and the dedicated neural processor is on the horizon. A notable example is the Cellular Neural Network (CNN). The analog direction has matured for low-power, smart vision sensors; the digital direction is gradually being shaped into an IP-core for algorithm acceleration, especially for use in FPGA-based high-performance systems. The chapter discusses the next step towards a flexible and scalable multi-core engine using Application-Specific Integrated Processors (ASIP). This topographic engine can serve many new media tasks, as illustrated by novel applications in Homeland Security. We conclude with a view on the CNN kaleidoscope for the year 2020.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hennessy, J.L., Patterson, D.A.: Computer Architecture: A Quantitative Approach, 4th edn. Morgan Kaufmann, San Francisco (2007)

    Google Scholar 

  2. Tummala, R.R.: Moore’s law meets its match. IEEE Spectr. 43(6), 44 (2006)

    Article  Google Scholar 

  3. von Neumann, J.: The general and logical theory of automata. In: Newman, J.R. (ed.) The World of Mathematics, pp. 2070–2089. Simon and Schuster, New York (1954). Reprinted by Dover Publications (2000)

    Google Scholar 

  4. Malki, S.: On hardware implementation of discrete-time cellular neural networks. Ph.D. Thesis, Lund University, Sweden (2008)

    Google Scholar 

  5. Zhirnov, V., Cavin, R., Leeming, G., Galatsis, K.: An assessment of integrated digital cellular automata architectures. IEEE Comput. 41(1), 38 (2008)

    Article  Google Scholar 

  6. Domínguez-Castro, R., Espejo, S., Rodríguez-Vázquez, A., Carmona, R.: A CNN universal chip in CMOS technology. In: Proceedings 3rd IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94), Rome, pp. 91–96, December 1994

    Google Scholar 

  7. Haykin, S.: Neural Networks: A Comprehensive Foundation. Macmillan, New York (1994)

    MATH  Google Scholar 

  8. Keegstra, H., Jansen, W.J., Nijhuis, J.A.G., Spaanenburg, L., Stevens, J.H., Udding, J.T.: Exploiting network redundancy for lowest–cost neural network realizations. In: Proceedings IEEE International Conference on Neural Networks, ICNN ’96, vol. 2, Washington, DC, pp. 951–955 (1996)

    Google Scholar 

  9. Hornik, K., Stinchcombe, M., White, H.: Multilayer feedforward networks are universal approximators. Neural Netw. 2, 359 (1989)

    Article  Google Scholar 

  10. Spaanenburg, L., Malki, S.: Artificial life goes ‘in-silico’. In: Proceedings 2005 IEEE International Conference on Computational Intelligence for Measurement Systems and Applications, CIMSA 2005, Giardini Naxos, Taormina, Sicily, Italy, pp. 267–272, 20–22 July 2005

    Google Scholar 

  11. Chua, L.O., Yang, L.: Cellular neural networks: theory. IEEE Trans. Circuits Syst. 35, 1257–1273 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  12. ter Brugge, M.H.: Morphological design of discrete-time cellular neural networks. Ph.D. Thesis, Rijksuniversiteit Groningen, Netherlands (2004)

    Google Scholar 

  13. Uchimoto, T., Hjime, H., Tanji, Y., Tanaka, M.: Design of DTCNN image processing (Japanese). Transactions of the Institute of Electronics, Information and Communication Engineers J84-D-2, 1464–1471 (2001)

    Google Scholar 

  14. Harrer, H., Nossek, J.A.: Discrete-time cellular neural networks. Int. J. Circuit Theory Appl. 20, 453 (1992)

    Article  MATH  Google Scholar 

  15. Domínguez-Castro, R., et al.: A 0.8 μm CMOS two-dimensional programmable mixed-signal focal-plane array processor with on-chip binary imaging and instructions storage. IEEE J. Solid-St. Circ. 32, 1013 (1997)

    Article  Google Scholar 

  16. Espejo, S., Domínguez-Castro, R., Liñán, G., Rodríguez-Vázquez, A.: A 64 × 64 CNN universal chip with analog and digital I/O. In: Proceedings 1998 IEEE International Conference on Electronics, Circuits and Systems (ICECS98), Lisbon, pp. 203–206 (1998)

    Google Scholar 

  17. Liñán, G., Espejo, S., Domínguez-Castro, R., Roca, E., Rodríguez-Vázquez, A.: CNNUC3: a mixed-signal 64 × 64 CNN universal chip. In: Proceedings 7th International Conference on Microelectronics for Neural, Fuzzy and Bio-Inspired Systems (MicroNeuro-99), IEEE, Piscataway, NJ, pp. 61–68 (1999)

    Google Scholar 

  18. Liñán, G., Espejo, S., Domínguez-Castro, R., Rodríguez-Vázquez, A.: ACE4k: an analog I/O 64 × 64 visual microprocessor chip with 7-bit analog accuracy. Int. J. Circuit Theory Appl. 30, 89 (2002)

    Article  MATH  Google Scholar 

  19. Rodríguez-Vázquez, A., Liñán-Cembrano, G., Carranza, L., Roca-Moreno, E., Carmona-Galan, R., Jimenez-Garrido, F., Domínguez-Castro, R., Espejo Meana, S.: ACE16k: the third generation of mixed-signal SIMD-CNN ACE chips toward VSoCs. IEEE Trans. Circuits Syst., I: Regul. Pap. 51, 851 (2004)

    Article  Google Scholar 

  20. Liñán, G., Rodríguez-Vázquez, A., Espejo, S., Domínguez-Castro, R.: ACE16k: A 128 × 128 focal plane analog processor with digital I/O. In: Proceedings of the 7th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA 2002), Frankfurt, Germany, pp.132–139, July 2002

    Google Scholar 

  21. Liñán, G., Foldesy, P., Espejo, S., Domínguez-Castro, R., Rodríguez-Vázquez, A.: A 0.5 μm CMOS 106 transistors analog programmable array processor for real-time image processing. In: Proceedings 25th European Solid-State Circuits Conference ESSCIRC ’99, Stresa (Italy), pp. 358–361

    Google Scholar 

  22. Delbrück, T., Mead, C.A.: Analog VLSI phototransduction by continuous-time, adaptive, logarithmic photoreceptor circuits. California Institute Technology, Computation and Neural Systems Program, Tech. Rep. CNS Memo no. 30, Pasadena, May (1994)

    Google Scholar 

  23. Rodríguez-Vázquez, A., Espejo, S., Domínguez-Castro, R., Huertas, J.L., Sanchez-Sinencio, E.: Current-mode techniques for the implementation of continuous- and discrete-time cellular neural networks. IEEE Trans. Circuits Syst. II: Analog Dig. Signal Process. 40, 132 (1993)

    Article  Google Scholar 

  24. Espejo, S., Rodríguez-Vázquez, A., Domínguez-Castro, R., Carmona, R.: Convergence and stability of the FSR CNN model. In: Proceedings 3rd IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-94), Rome, pp. 411–416 (1994)

    Google Scholar 

  25. Jimenez-Marrufo, A., Mendizdbal, A., Morillas-Castillo, S., Dominguez-Castro, R., Espejo, S., Romay-Judrez, R., Rodriguez-Vazquez, A.: Data matrix code recognition using the Eye-RIS vision system. In: Proceedings IEEE International Symposium on Circuits and Systems, ISCAS 2007, New Orleans, p. 1214

    Google Scholar 

  26. Zarándy, Á., Keresztes, P., Roska, T., Szolgay, P.: An emulated digital architecture implementing the CNN Universal Machine. In: Proceedings 5th IEEE International Workshop on Cellular Neural Networks and their Applications (CNNA-98), London, pp. 249–252 (1998)

    Google Scholar 

  27. Keresztes, P., et al.: An emulated digital CNN implementation. J. VLSI Signal Process 23, 291–303 (1999)

    Article  Google Scholar 

  28. Nagy, Z., Szolgay, P.: Configurable multilayer CNN-UM emulator on FPGA. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 50, 774 (2003)

    Article  Google Scholar 

  29. Lopich, A., Dudek, P.: An 80 × 80 general-purpose digital vision chip in 0.18 μm CMOS technology. In: Proceedings IEEE International Symposium on Circuits and Systems, ISCAS 2010, Paris, pp. 4257–4260, May 2010

    Google Scholar 

  30. Alba, L., et al.: New visual sensors and processors. In: Arena, P., Patanè, L. (eds.) Spatial Temporal Patterns for Action-Oriented Perception in Roving Robots. Cognitive Systems Monographs, pp. 351–370. Springer, Berlin/Heidelberg (2009)

    Chapter  Google Scholar 

  31. Vörösházi, Z., Nagy, Z., Kiss, A., Szolgay, P.: An embedded CNN-UM global analogic programming unit implementation on FPGA. In: Proceedings 10th IEEE International Workshop on Cellular Neural Networks and Their Applications, CNNA ’06, Istanbul, Turkey, Aug 2006. doi: 10.1109/CNNA.2006.341652

  32. Fang, W., Wang, C., Spaanenburg, L.: In search of a robust digital CNN system. In: Proceedings 10th IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA ’06, Istanbul, Turkey, Aug 2006. doi: 10.1109/CNNA.2006.341654

  33. Thiran, P.: Influence of boundary conditions on the behavior of cellular neural networks. IEEE Trans. Circuits and Syst.– I: Fundam. Theory Appl. 40, 207 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  34. Mirzai, B., Lím, D., Moschytz, G.S.: Robust CNN templates: theory and simulations. In: 4th IEEE International Workshop on Cellular Neural Networks and their Applications, CNNA-96, Seville, Spain, pp. 393–398 (1996)

    Google Scholar 

  35. Grube, R., Dudek, V., Hoefflinger, B., Schau, M.: 0.5 Volt CMOS Logic Delivering 25 Million 16 × 16 Multiplications/s at 400 fJ on a 100 nm T-Gate SOI Technology. Best-Paper Award. IEEE Computer Elements Workshop, Mesa, (2000)

    Google Scholar 

  36. van Drunen, R., Spaanenburg, L., Lucassen, P.G., Nijuis, J.A.G., Udding, J.T.: Arithmetic for relative accuracy. In: Proceedings IEEE Symposium on Computer Arithmetic, ARITH 1995, Bath, England, pp. 239–250 (July 1995)

    Google Scholar 

  37. Spaanenburg, L., Hoefflinger, B, Neusser, S., Nijhuis, J.A.G., Siggelkow, A.: A multiplier-less digital neural network. In: Digest 2nd Int. Conference on Microelectronics of Neural Networks, MicroNeuro 1991, Muenchen, Germany, pp. 281–290 (October 1991)

    Google Scholar 

  38. Zhang, L., Malki, S., Spaanenburg, L.: Intelligent camera cloud computing. In: IEEE International Symposium on Circuits and Systems, ISCAS 2009, Taipei, Taiwan, pp. 1209–1212, May 2009

    Google Scholar 

  39. Chalermsuk, K., Spaanenburg, R.H., Spaanenburg, L., Seuter, M., Stoorvogel, H.: Flexible-length fast Fourier transform for COFDM. In: Proceedings 15th IEEE International Conference on Electronics, Circuits and Systems, ICECS 2008, Malta, pp. 534–537, Aug 2008

    Google Scholar 

  40. Kari, J.: Theory of cellular automata: a survey. Elsevier Theoretical Computer Science 334, 3–33 (2005)

    Google Scholar 

  41. Chua, L.O., Roska T.: The CNN universal machine – Part I: The architecture. In: Proceedings 2nd IEEE Int. workshop on Cellular Neural Networks and their Applications, CNNA-92, Muenich, Germany, pp. 110 (1992)

    Google Scholar 

  42. Roska, T et al.: A hardware accelerator board for Cellular Neural Networks: CNN-HAC. In: Proceedings IEEE Int. workshop on Cellular Neural Networks and their Applications, CNNA-90, Budapest, Hungary, pp. 160–168 (1990)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lambert Spaanenburg .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Spaanenburg, L., Malki, S. (2011). Digital Neural Networks for New Media. In: Hoefflinger, B. (eds) Chips 2020. The Frontiers Collection. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23096-7_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23096-7_16

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-22399-0

  • Online ISBN: 978-3-642-23096-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics