Skip to main content

Robust Trajectory-Space TV-L1 Optical Flow for Non-rigid Sequences

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 6819))

Abstract

This paper deals with the problem of computing optical flow between each of the images in a sequence and a reference frame when the camera is viewing a non-rigid object. We exploit the high correlation between 2D trajectories of different points on the same non-rigid surface by assuming that the displacement sequence of any point can be expressed in a compact way as a linear combination of a low-rank motion basis. This subspace constraint effectively acts as a long term regularization leading to temporally consistent optical flow. We formulate it as a robust soft constraint within a variational framework by penalizing flow fields that lie outside the low-rank manifold. The resulting energy functional includes a quadratic relaxation term that allows to decouple the optimization of the brightness constancy and spatial regularization terms, leading to an efficient optimization scheme. We provide a new benchmark dataset, based on motion capture data of a flag waving in the wind, with dense ground truth optical flow for evaluation of multi-view optical flow of non-rigid surfaces. Our experiments, show that our proposed approach provides comparable or superior results to state of the art optical flow and dense non-rigid registration algorithms.

This work is supported by the European Research Council under ERC Starting Grant agreement 204871-HUMANIS. We are grateful to D. Pizarro for providing results of their method [1] and tracks for the synthetic sequence.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Pizarro, D., Bartoli, A.: Feature-based deformable surface detection with self-occlusion reasoning. In: International Symposium on 3D Data Processing, Visualization and Transmission, 3DPVT 2010 (2010)

    Google Scholar 

  2. Weickert, J., Schnörr, C.: Variational optic flow computation with a spatio-temporal smoothness constraint. JMIV 14, 245–255 (2001)

    Article  MATH  Google Scholar 

  3. Irani, M.: Multi-frame correspondence estimation using subspace constraints. IJCV (2002)

    Google Scholar 

  4. Torresani, L., Yang, D., Alexander, E., Bregler, C.: Tracking and modeling non-rigid objects with rank constraints. In: CVPR (2001)

    Google Scholar 

  5. Torresani, L., Bregler, C.: Space-time tracking. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2350, pp. 801–812. Springer, Heidelberg (2002)

    Chapter  Google Scholar 

  6. Garg, R., Pizarro, L., Rueckert, D., Agapito, L.: Dense multi-frame optic flow for non-rigid objects using subspace constraints. In: Kimmel, R., Klette, R., Sugimoto, A. (eds.) ACCV 2010, Part IV. LNCS, vol. 6495, pp. 460–473. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  7. Nir, T., Bruckstein, A.M., Kimmel, R.: Over-parameterized variational optical flow. IJCV 76, 205–216 (2008)

    Article  Google Scholar 

  8. Chambolle, A.: An algorithm for total variation minimization and applications. JMIV 20, 89–97 (2004)

    Article  MathSciNet  Google Scholar 

  9. Chambolle, A., Pock, T.: A first-order primal-dual algorithm for convex problems with applications to imaging. JMIV (2011)

    Google Scholar 

  10. Horn, B., Schunck, B.: Determining optical flow. Artificial Intelligence 17, 185–203 (1981)

    Article  Google Scholar 

  11. Brox, T., Malik, J.: Large displacement optical flow: Descriptor matching in variational motion estimation. TPAMI (2010)

    Google Scholar 

  12. Brox, T., Bruhn, A., Papenberg, N., Weickert, J.: High accuracy optical flow estimation based on a theory for warping (chapter). In: Pajdla, T., Matas, J(G.) (eds.) ECCV 2004. LNCS, vol. 3024, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  13. Zach, C., Pock, T., Bischof, H.: A duality based approach for realtime TV- L1 optical flow. In: Hamprecht, F.A., Schnörr, C., Jähne, B. (eds.) DAGM 2007. LNCS, vol. 4713, pp. 214–223. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  14. Wedel, A., Pock, T., Braun, J., Franke, U., Cremers, D.: Duality TV-L1 flow with fundamental matrix prior. In: Image and Vision Computing, New Zealand (2008)

    Google Scholar 

  15. Wedel, A., Cremers, D., Pock, T., Bischof, H.: Structure- and motion-adaptive regularization for high accuracy optic flow. In: ICCV (2009)

    Google Scholar 

  16. Alvarez, L., Weickert, J., Sánchez, J.: Reliable estimation of dense optical flow fields with large displacements. IJCV 39, 41–56 (2000)

    Article  MATH  Google Scholar 

  17. Steinbruecker, F., Pock, T., Cremers, D.: Large displacement optical flow computation without warping. In: ICCV (2009)

    Google Scholar 

  18. Pock, T., Cremers, D., Bischof, H., Chambolle, A.: Global solutions of variational models with convex regularization. SIAM Journal on Imaging Sciences (2010)

    Google Scholar 

  19. Stühmer, J., Gumhold, S., Cremers, D.: Real-time dense geometry from a handheld camera. In: Goesele, M., Roth, S., Kuijper, A., Schiele, B., Schindler, K. (eds.) Pattern Recognition. LNCS, vol. 6376, pp. 11–20. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  20. Tian, Y., Narasimhan, S.: A globally optimal data-driven approach for image distortion estimation. In: CVPR (2010)

    Google Scholar 

  21. Baker, S., Scharstein, D., Lewis, J., Roth, S., Black, M., Szeliski, R.: A database and evaluation methodology for optical flow. IJCV 92, 1–31 (2011)

    Article  Google Scholar 

  22. Bregler, C., Hertzmann, A., Biermann, H.: Recovering non-rigid 3D shape from image streams. In: CVPR (2000)

    Google Scholar 

  23. Torresani, L., Hertzmann, A., Bregler., C.: Non-rigid structure-from-motion: Estimating shape and motion with hierarchical priors. PAMI 30 (2008)

    Google Scholar 

  24. Shi, J., Tomasi, C.: Good features to track. CVPR (1994)

    Google Scholar 

  25. Rudin, L., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Physica D 60, 259–268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. White, R., Crane, K., Forsyth, D.: Capturing and animating occluded cloth. ACM Trans. on Graphics (2007)

    Google Scholar 

  27. Wedel, A., Pock, T., Zach, C., Bischof, H., Cremers, D.: An improved algorithm for TV-L1 optical flow. In: Cremers, D., Rosenhahn, B., Yuille, A.L., Schmidt, F.R. (eds.) Statistical and Geometrical Approaches to Visual Motion Analysis. LNCS, vol. 5604, pp. 23–45. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Lucas, B.D., Kanade, T.: An iterative image registration technique with an application to stereo vision. In: IJCAI 1981 (1981)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Garg, R., Roussos, A., Agapito, L. (2011). Robust Trajectory-Space TV-L1 Optical Flow for Non-rigid Sequences. In: Boykov, Y., Kahl, F., Lempitsky, V., Schmidt, F.R. (eds) Energy Minimization Methods in Computer Vision and Pattern Recognition. EMMCVPR 2011. Lecture Notes in Computer Science, vol 6819. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-23094-3_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-23094-3_22

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-23093-6

  • Online ISBN: 978-3-642-23094-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics