Next Best Step and Expert Recommendation for Collaborative Processes in IT Service Management

  • Hamid Reza Motahari-Nezhad
  • Claudio Bartolini
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6896)


IT service management processes are people intensive and collaborative by nature. There is an emerging trend in IT service management applications, moving away from rigid process orchestration to the leveraging of collaboration technologies. An interesting consequence is that staff can collaboratively define customized and ad-hoc step flows, consisting of the sequence of activities necessary to handle each particular case. Capturing and sharing the knowledge of how previous similar cases have been resolved becomes useful in recommending what steps to take and what experts to consult to handle a new case effectively. We present an approach and a tool that analyzes previous IT case resolutions in order to recommend the best next steps to handle a new case, including recommendations on the experts to invite to help with resolution of the case. Our early evaluation results indicate that this approach shows significant improvement for making recommendations over using only process models discovered from log traces.


Best practice processes Collaborative and Conversational Process Definition and Enactment Step Recommendation Expert Recommendation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Motahari-Nezhad, H.R., Bartolini, C., Graupner, S., Singhal, S., Spence, S.: IT Support Conversation Manager: A Conversation- Centered Approach and Tool for Managing Best Practice IT Processes. In: The Proc. of 14th IEEE EDOC (EDOC 2010) (October 25-29, 2010)Google Scholar
  2. 2.
    Motahari-Nezhad, H.R., Saint-Paul, R., Benatallah, B., Casati, F.: Protocol Discovery from Imperfect Service Interaction Logs. In: ICDE 2007, pp. 1405–1409 (2007)Google Scholar
  3. 3.
    Van der Aalst, W.M.P., Van Dongen, B.F., Herbst, J., Maruster, L., Schimm, G., Weijters, A.J.: Workflow mining: a survey of issues and approaches. Data Knowl. Eng. 47(2), 237–267 (2003)CrossRefGoogle Scholar
  4. 4.
    Schonenberg, H., Weber, B., van Dongen, B.F., van der Aalst, W.: Supporting Flexible Processes through Recommendations Based on History. In: Dumas, M., Reichert, M., Shan, M.-C. (eds.) BPM 2008. LNCS, vol. 5240, pp. 51–66. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  5. 5.
    Dorn, C., Burkhart, T., Werth, D., Dustdar, S.: Self-adjusting recommendations for people-driven ad-hoc processes. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 327–342. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  6. 6.
    Shao, Q., Chen, Y., Tao, S., Yan, X., Anerousis, N.: Efficient ticket routing by resolution sequence mining. In: KDD 2008, pp. 605–613 (2008)Google Scholar
  7. 7.
    Miao, G., Moser, L., Yan, X., Tao, S., Chen, Y., Anerousis, N.: Generative Models for Ticket Resolution in Expert Networks. In: Proceedings KDD 2010 (2010)Google Scholar
  8. 8.
    Sun, P., Tao, S., Yan, X., Anerousis, N., Chen, Y.: Content-Aware Resolution Sequence Mining for Ticket Routing. In: Hull, R., Mendling, J., Tai, S. (eds.) BPM 2010. LNCS, vol. 6336, pp. 243–259. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  9. 9.
    Kang, Y.-B., Zaslavsky, A.B., Krishnaswamy, S., Bartolini, C.: A knowledge-rich similarity measure for improving IT incident resolution process. In: SAC 2010, pp. 1781–1788 (2010)Google Scholar
  10. 10.
    Weber, B., Reichert, M., Rinderle-Ma, S., Wild, W.: Providing Integrated Life Cycle Support in Process-Aware Information Systems. Int. J. Cooperative Inf. Syst. 18(1), 115–165 (2009)CrossRefGoogle Scholar
  11. 11.
    Lu, R., Sadiq, S.W., Governatori, G.: On managing business processes variants. Data Knowl. Eng. 68(7), 642–664 (2009)CrossRefGoogle Scholar
  12. 12.
    Madhusudan, T., Leon Zhao, J., Marshall, B.: A Case-based Reasoning Framework for Workflow Model Management. Data and Knowledge Engineering: Special Issue on Business Process Management 50(1), 87–115 (2004)CrossRefGoogle Scholar
  13. 13.
    Navarro, G.: A guided tour to approximate string matching. ACM Computing Surveys 33(1), 31–88 (2001)CrossRefGoogle Scholar
  14. 14.
    HP BTO Software, HP Service Manager,
  15. 15.
    Lakshmanan, G.T., Duan, S., Keyser, P.T., Curbera, F., Khalaf, R.: A Heuristic Approach for Making Predictions for Semi-Structured Case Oriented Business Processes. Business Process Management Workshops, pp.640–651 (2010)Google Scholar
  16. 16.
    Rozinat, A., van der Aalst, W.M.P.: Decision Mining in ProM. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) BPM 2006. LNCS, vol. 4102, pp. 420–425. Springer, Heidelberg (2006)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Hamid Reza Motahari-Nezhad
    • 1
  • Claudio Bartolini
    • 1
  1. 1.Hewlett Packard LaboratoryPalo AltoUSA

Personalised recommendations