Advertisement

Discovering Characteristics of Stochastic Collections of Process Models

  • Kees van Hee
  • Marcello La Rosa
  • Zheng Liu
  • Natalia Sidorova
Part of the Lecture Notes in Computer Science book series (LNCS, volume 6896)

Abstract

Process models in organizational collections are typically created by the same team and using the same conventions. As such, these models share many characteristic features like size range, type and frequency of errors. In most cases merely small samples of these collections are available due to e.g. the sensitive information they contain. Because of their sizes, these samples may not provide an accurate representation of the characteristics of the originating collection. This paper deals with the problem of constructing collections of process models from small samples of a collection, with the purpose to estimate the characteristics of this collection. Given a small sample of process models drawn from a real-life collection, we mine a set of generation parameters that we use to generate arbitrarily-large collections that feature the same characteristics of the original collection. In this way we can estimate the characteristics of the original collection on the generated collections. We extensively evaluate the quality of our technique on various sample datasets drawn from both research and industry.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    van der Aalst, W.M.P.: The Application of Petri Nets to Workflow Management. The Journal of Circuits, Systems and Computers 8(1), 21–66 (2001)CrossRefGoogle Scholar
  2. 2.
    Berthelot, G.: Transformations and Decompositions of Nets. In: Advances in Petri Nets, vol. 254, pp. 360–376. Springer, Heidelberg (1987)Google Scholar
  3. 3.
    van Dongen, B.F., Alves der Medeiros, A.K., Verbeek, H.M.W., Weijters, A.J.M.M., van der Aalst, W.M.P.: The ProM Framework: A New Era in Process Mining Tool Support. In: Ciardo, G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 444–454. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  4. 4.
    Goud, R., van Hee, K.M., Post, R.D.J., van der Werf, J.M.E.M.: Petriweb: A Repository for Petri Nets. In: Donatelli, S., Thiagarajan, P.S. (eds.) ICATPN 2006. LNCS, vol. 4024, pp. 411–420. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  5. 5.
    van Hee, K.M., Hidders, J., Houben, G., Paredaens, J., Thiran, P.: On the Relationship between Workflow Models and Document Types. Information Systems 34(1), 178–208 (2008)Google Scholar
  6. 6.
    van Hee, K.M., La Rosa, M., Liu, Z., Sidorova, N.: Discovering Characteristics of Stochastic Collections of Process Models. BPM Center Report BPM-11-06, BPMcenter.org (2011)Google Scholar
  7. 7.
    van Hee, K.M., Liu, Z.: Generating Benchmarks by Random Stepwise Refinement of Petri Nets. In: Proc. of APNOC, pp. 30–44 (2010)Google Scholar
  8. 8.
    van Hee, K.M., Sidorova, N., Voorhoeve, M.: Generalised Soundness of Workflow Nets Is Decidable. In: Cortadella, J., Reisig, W. (eds.) ICATPN 2004. LNCS, vol. 3099, pp. 197–215. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  9. 9.
    La Rosa, M., Dumas, M., Uba, R., Dijkman, R.: Merging business process models. In: Proc. of CoopIS, pp. 96–113. Springer, Heidelberg (2010)Google Scholar
  10. 10.
    La Rosa, M., Reijers, H.A., van der Aalst, W.M.P., Dijkman, R.M., Mendling, J., Dumas, M., Garcia-Banuelos, L.: AProMoRe: An Advanced Process Model Repository. Expert Systems with Applications 38(6) (2011)Google Scholar
  11. 11.
    Montgomery, D.C., Runger, G.C.: Applied Statistics and Probability for Engineers, 5th edn. Wiley & Sons, Chichester (2011)zbMATHGoogle Scholar
  12. 12.
    Suzuki, I., Murata, T.: A Method for Stepwise Refinement and Abstraction of Petri Nets. Journal of Computer and System Sciences 27(1), 51–76 (1983)CrossRefzbMATHGoogle Scholar
  13. 13.
    Wu, C.F.J.: Jackknife, Bootstrap and Other Resampling Methods in Regression Analysis. Annals of Statistics 14(4), 1261–1295 (1986)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2011

Authors and Affiliations

  • Kees van Hee
    • 1
  • Marcello La Rosa
    • 2
    • 3
  • Zheng Liu
    • 1
  • Natalia Sidorova
    • 1
  1. 1.Eindhoven University of TechnologyThe Netherlands
  2. 2.Queensland University of TechnologyAustralia
  3. 3.NICTA Queensland LabAustralia

Personalised recommendations